téxvn Trees: A New Course in Data Structures

Andrew T. Duchowski
School of Computing
Clemson University

Clemson, SC 29634-0974

duchowski@clemson.edu

Robert Geist
School of Computing
Clemson University
Clemson, SC 29634-0974
geist@clemson.edu

James Westall
School of Computing
Clemson University
Clemson, SC 29634-0974
westall@clemson.edu

Robert Schalkoff
Department of Electrical &
Computer Engineering
Clemson University
Clemson, SC 29634-0915
rischal@clemson.edu

ABSTRACT

The t€)vn method is an approach to undergraduate computer sci-
ence education that is based on cognitive constructivisim, in the
sense of Piaget, and which invokes several course design directives
that include re-combining art and science, problem-based learning,
problem selection from the visual problem domain, and cognitive
apprenticeship. The paper describes a new T€xvm course in data
structures. It includes a full comparative assessment of the realized
improvement in student problem solving capability and, for the first
time, cognitive authenticity in problem selection, in that the course
problem is a variation on a very recent research result.

Categories and Subject Descriptors

K.3.2 [Computers and Education]: Computer and Information
Science Education—Curriculum

General Terms

Design, Experimentation, Human Factors

Keywords

computer graphics, curriculum design, problem-based instruction,
ray-tracing, t€yvn

1. INTRODUCTION

The té€xvn project provides an unusual, perhaps radical, alter-
native to the standard design of the computing curriculum for the
bachelor’s degree in computer science. As described by Davis et
al. [4, 5], it is built on a foundation of cognitive constructivism and
draws directly from Piaget [13], Dewey [6], and Rousseau [15] in
its basic tenets:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGCSE’11, March 9-12, 2011, Dallas, Texas USA

Copyright 2011 ACM 978-1-4503-0500-6/11/03 ...$10.00.

e L earning is an active process of constructing individual knowl-
edge.

e Learning occurs when observations differ from expectations,
and new models must be constructed as accommodations.

e Teaching is the process of invoking and supporting these con-
structions.

Nevertheless, this foundation alone is an insufficient specification
of method. The téxvn designers specify pillars, upon which courses
should be designed and taught:

e re-combining art and science An original motivation for the
Té€yvn design was (and is) effecting a reconnection of diver-
gent branches in the U.S. educational system, art and sci-
ence. The word, Té€x Vv, is the Greek word for art. It shares
its root with teyvoloyia, the Greek word for fechnology.
The lateralization of brain functions need not be enforced by
curriculum. Addressing single problems that require linear
reasoning, spatial manipulation, and visual processing can
offer bi-lateral engagement, with its attendant creativity and
originality.

o problem-based learning Problem-based learning is well-known
[7], and its use is widespread. Carefully designed problems
demand that learners acquire self-directed learning strate-
gies, critical knowledge, and the problem-solving proficiency
needed for effective progress in deriving solutions. The té€xvn
method differs from other problem-based learning methods
in the size and scope of the problems addressed. It calls for
one, large-scale problem per semester.

o visual domain Problems are chosen from the fields of com-
puter graphics and visualization. Human society is increas-
ingly visually-oriented, and visual problems quickly capture
the attention and interest of young students. Further, in his
discussions on visual communication, Cunningham [3] ob-
served that the tools of thought for effective problem solv-
ing, as well the attendant communication skills for group ef-
forts, were extremely well-supported by computer graphics.
Cunningham’s work was a principal motivating factor in the
original téyvn design.

e cognitive apprenticeship Resnick [14] observed that the time-
honored master-apprentice relationship could be transferred
from the arena of physical skills to that of cognitive skills,

given an appropriately designed learning environment. Pro-
cess is the key, rather than any artificial balance in the roles
of master and apprentice. There is great value in observation
of a master at work. Original solutions to challenging prob-
lems, including missteps and erasures, carry a vitality that is
missing in solutions that have been cleaned and polished for
presentation in more formal settings. Of course, such vital-
ity will only appear if the cognitive demands on the master
are authentic. Thus the ideal problems for T€xvn courses are
those that challenge both student and instructor.

The entire philosophical basis of the T€yvn method, as well as the
results of instructional experiments with introductory courses, have
been presented in several papers, e.g. [4, 5, 10], and in the disser-
tation by Matzko [9].

We present here the results of teaching a new, €y vn-based course
in data structures at Clemson University during the Fall semester
of 2009. In addition to the new course design, we offer two impor-
tant extensions of previous efforts. First, we include the results of
a full, comparative assessment of the realized improvement in stu-
dent problem-solving capability. The assessment instruments were
designed prior to the beginning of the course(s), and included pre-
test and post-test evaluations with linear regression models. Sec-
ond, for the first time we have invoked full cognitive authenticity
in problem selection. The semester-long problem is a variation on
graphics research results that were published only one year earlier.

2. DATA STRUCTURES

A Data Structures course is a standard component of most un-
dergraduate curricula in computing. The topic remains a specific
requirement for CAC/ABET accreditation in the 2009-2010 cycle
[2]. The conventional approach to Data Structures, as typified by
the popular book of Weiss [17], is breadth-first, wherein a wide
range of structures are considered, hypothetical cases in which each
might be useful are proposed, and some elementary algorithm anal-
ysis is offered. The breadth of topic, combined with the time con-
straints of the standard semester course, allows consideration of
only elementary examples. The students are well aware that they
are solving toy problems in series.

The t€)vn course, in contrast, is depth-first. Investigations into
data structures are driven by real needs for adequate execution time,
as experienced by student teams in solving a real problem. Elemen-
tary algorithm analysis is augmented by profiling code prototypes
to obtain a priori runtime estimates of proposed solutions. This ap-
proach sacrifices some breadth of coverage, but students gather a
first-hand understanding of the real use and real value of a variety
of data structures. Seeking new structures as new problems arise
should become a natural process for them.

To use an analogy from the construction industry, in a classical
course students practice hammering nails, practice sawing 2x4s,
learn that a nail gun is faster than a hammer, and learn that a SKIL
saw is faster than a hand saw, but at the conclusion of the course
they have not a clue as to how to build a house. In the Té€) V™ course,
the instructor leads student teams in building houses. The students
learn of the tools available and develop the skills to use them within
a context of purpose.

3. STUDENT BACKGROUND

Data Structures (CPSC 212) is the third course for undergradu-
ate majors in the School of Computing at Clemson University. It
is a 4-hour course, with 3 lecture/discussion sessions and a single
2-hour lab session each week. It is typically taken by first semester

Figure 1: Example 102 scene.

sophomores. At the beginning of the semester, students were ran-
domly assigned to one of two sections. The conventional section
was taught by author Duchowski using a conventional approach
which followed the topics and order of the Weiss [17] textbook.
The téx V1 section was taught by author Geist.

Because the té€xvn curriculum design was in place during the
2008-2009 academic year, students who had completed the first
two courses had already experienced (the joy and) the difficulty of
solving large, semester-long problems, had significant experience
with C, and had some experience with C++.

The semester-long, Téyvn problem of the second course, CPSC
102, is writing a ray tracer to generate synthetic images. The scene
of Figure 1 is typical of the output, although orientations that are
not axis-aligned, such as the view and the cube placement, may not
have been covered by all sections. Stronger students might have
added additional light sources, textures (photos mapped to scene
geometry), and more interesting, though still elementary, objects.

4. THE NEW PROBLEM

The new problem for téyvn Data Structures builds on the ray
tracer from the second course. Of course, some students had not
completed this course, and others who had completed it no longer
had copies of their final code. A generic ray tracer, written in C
and capable of generating the scene of Figure 1, was distributed
to all students on the first day. The course goal, also presented
on first day, was then to build a C++ ray tracer to generate scenes
such as those shown in Figure 2. These scenes, taken from [8],
are also synthetic, but, obviously, they are much more complex.
Rather than a handful of polygons or surfaces, each of these scenes
contains more than 250,000,000 triangles.

The apparent impossibility of the task at hand is then easily de-
scribed. Simple arithmetic shows the folly of the effort. Anti-
aliasing will demand a minimum of about 5 rays per pixel, but most
of these rays will generate another, to determine whether the object
hit by the ray is in a shadow. The images of Figure 2, at 896 x672
pixels, will thus each require approximately 6,021,120 rays. To find
the first visible triangle, each ray must be tested against each trian-
gle, i.e., approximately 3 x 10!2 tests. The fastest, most efficient
ray/triangle intersection test is given by the Moller/Trumbore algo-
rithm [11]. By placing CPU cycle counters into the calling code,
one can determine an accurate measure of execution time for this

LA

(a) Target scene rendering

(b) Rendering with pine trees rather than beech trees

Figure 2: Sample renderings

test. On a fast, modern CPU, it takes approximately 85 ns. So, if
the time for texture lookup and overhead is ignored, this will take
at least 3 x 10'2 x 85 x 1072 = 255,000 seconds, i.e., 3 days. Even
if the students are willing to accept substandard images obtained by
using only one primary ray per pixel, this will still take 14 hours.

It was then revealed to the students that each of the images of
Figure 2 was actually ray-traced in less than 1 second. “How is this
possible?” was the universal response. The short answer is “Data
Structures,” and the long answer is the course content.

4.1 Phasel

The course begins with a code review of the distributed ray tracer,
which is available online at http://www.cs.clemson.edu/~geist/212/
rt.vOzup.c. This includes discussion of C structures, arrays, linked
lists, and function pointers. It also includes an orientation to 3D ge-
ometry, including a discussion of dot and cross products and their
geometric interpretation, and translation and rotation operators (ex-
pressed as triples of dot products) that are necessary to move ob-
jects (such as trees) into desired positions within an overall scene.

A forest is built from many trees, and each tree is built from many
leaves. The first assignment is an elementary increment: modify
the distributed C ray tracer to produce a C++ ray tracer that will
generate an image similar to that of Figure 3. The distributed ray
tracer, though strictly C code, will compile under g++, but assign-
ment requirements included replacement of all function pointers,
structs, and unions. As noted earlier, students work in self-selected
teams, with a limit of 4 students per team. The only significant
problem in this phase is handling the leaf geometry. It is imple-
mented as a pair of texture-mapped triangles, arranged as a single
rectangle. The texture (photo) contains more than just the color
channels (r,g,b) for the leaf. It contains an alpha channel that deter-

Figure 3: Assignment 1.

mines per-pixel visibility within the photo. Thus, if a ray/triangle
intersection test determines that a texture-mapped triangle was hit,
the appropriate pixel in the photo must be examined to determine
whether the intersection was within the leaf boundary. If so, the
leaf color from the photo is used. If not, a miss is reported. Find-
ing the appropriate pixel within the photo requires a discussion of
interpolation, and handling the 4-channel photo requires a discus-
sion of parsing large, externally-supplied files of relatively simple
format. The portable pixmap format (.ppm) was used for all tex-
tures/images. A simple extension to the P6 format allowed 4 bytes
per pixel.

The transition to C++, begun with this phase, was generally seen
as arelief, rather than a burden. The ray tracing problem is a natural
one for object-oriented solution. Operator overloading for vector
operations on points and colors offers significant savings, and the
different geometries (triangles, boxes, spheres, and texture-mapped
versions of each) are conveniently handled as derived classes with
with virtual methods and polymorphic operators.

4.2 Phase 2

In the second phase, the students were asked to ray trace a single
tree, such as that shown in Figure 4. Models for several tree species
([12]) were supplied in the form of .obj files. This phase occupied
most of the semester. Parsing .obj files is far more complicated than
parsing simple, 4-component .ppm images. Once parsing, with at-
tendant focus on fast I/O, is mastered, the real fun begins. The
image of Figure 4 contains only two textures, but it contains almost
500,000 triangles. From Phase 1, the students know how to render
linked lists of texture mapped triangles, and so the natural inclina-
tion is to build a linked list of triangles and ray trace as before.

The students were given a full class period to come to the real-
ization that each ray cannot be tested against each triangle, and so
the scene geometry must be partitioned to avoid intersection tests.
Thus the kd-tree [1], a balanced, binary tree of axis-aligned split-
ting planes, is introduced. Construction of such trees alone invokes
interesting sub-problems such as the often repeated task of finding
the median of a very long list of items (triangle vertices). The nat-
ural approach proposed by students is to sort the list and select the
middle item. This leads to a discussion of sorting techniques and
their comparative performance on very large tasks. During the de-
velopment of quicksort, it is observed that the same basic compare-
and-swap operation used in quicksort could be used to build a an

Figure 4: Assignment 2.

O(N) algorithm to find the median! This linear algorithm is then
integrated into the kd-tree construction. Although sorting per se is
ultimately abandoned for the ray tracing task, the students become
quite knowledgeable on the topic.

Building the kd-tree also requires recursive traversals. Since the
correctly constructed kd-tree is complete, a discussion of the ad-
vantages of heap representation is conducted.

Traversing the kd-tree to find a reduced collection of triangles
to be ray-tested is a delicate operation that requires ray-plane in-
tersection tests and an auxiliary stack to hold pointers to potential
candidates, but the search and the need for the stack are easily moti-
vated with a 2D analogy drawn on the classroom white/black board.
Pseudo-code for the traversal is show in Figure 5. Execution time

(t_min,t_max)=intersect(ray,bounding_box)
stack.push(root,t_min,t_max)
while(not stack.empty):
(node,t_min,t_max) = stack.pop
while(not node.is_leaf):
a = node.splitaxis
t_split = (node.splitvalue - ray.origin[a])/(ray.dir[a])
(one,two)=order(ray.dir[a],node.left,node.right)
if(t_split>t_max)
node=one
else if(t_split<t_min or t_split<0)
node=two
else
stack.push(two,t_split,t_max)
node=one
t_max=t_split
for triangle in node.triangles:
t_hit = min(t_hit,intersect(ray,triangle))
if t_hit < t_max
break
return t_hit

Figure 5: Stack-based kd-tree traversal for ray tracing

that is O(logN) versus that which is O(N) becomes truly meaning-
ful when N reaches the levels found in this task.

4.3 Phase3

Phrase 3 requires ray tracing a miniature “forest” consisting of
multiple species of trees with multiple instances of at least one

Figure 6: Example (with permission) from student C. J. Corsi

species. Only one copy of each species’ geometry was allowed.
The other instances contain only rotation and translation informa-
tion. The entire scene is represented as a kd-tree of bounding boxes,
each leaf of which contains a list of one or more bounding boxes,
each of which contains either a simple geometry list or another kd-
tree representing a physical tree. Correct handling of normals to
surfaces was a delicate matter. Each surface, e.g. a physical tree
leaf, had a normal with respect to its defined geometry at the point
of ray-surface intersection. This normal had to be combined with
the normal to the enclosing bounding box, set during placement of
the tree, in order to yield the correct world-coordinate normal.

The students were encouraged to be creative in their designs and
reminded that there was no “correct” or “incorrect” final image. A
sample student image is shown in Figure 6.

This somewhat singular focus on the structures needed for ray
tracing forests did not completely preclude other, more traditional
topics from the discussions. Brief forays into AVL trees, red-black
trees, hashing, and dynamic programming were also made, after
front-loading the structures and methods necessary for the ray trac-
ing task. The lab sessions were used primarily to reinforce un-
derstanding of these auxiliary topics and components of the C++
language.

Finally some discussion of mapping highly parallel tasks such as
ray tracing to the relatively new SIMD architectures (GPUs) was
offered.

S. ASSESSMENT

Assessment of the principal, desired accommodation, an ability
to solve real problems, is extremely difficult within the classroom
setting. Results of assignments that extend over multiple class pe-
riods have questionable validity. Instead, we developed ABET-
like embedded instruments which were incorporated into the Téxvn
course (treatment) and the conventional course in both pre-test and
final exam. Two analyses were carried out. First, a t-test was used
on the per-student change in score from the pre-test to the final
exam. The null hypothesis for this test was:

Hy: There is no benefit to the Téyvn method.

Second, a linear regression analysis was conducted using 3 regres-
sors, the pre-test score, the standard constant for such tests (1), and

Table 1: Change from pre-test to final exam
section mean change | standard dev. | population
TELVN 0.02 0.26 24

conventional -0.13 0.28 17

T = 1.7269, 0=0.05, reject Hy

a class value, which was set to 1 for the téxvn class and 0 for the
conventional class. The estimated coefficient of class, if signifi-
cant, is then an indicator of the value of the t€xvn method. Thus,
if F' denotes the score on embedded final exam questions, P the
score on pre-test questions, C the class, and E the error, the linear
model was

F =BpP+PcC+Pxl1+E

All pre-test questions and all final exam embedded questions
were multiple choice, to avoid any bias in grading and issues of
partial credit. Pre-test questions were largely focused on C code-
reading. An example is shown in Figure 7. Embedded final exam

If the following code:
#include <stdio.h>

void myfunc(int a)

{

if(a >=0){
printf(“%d ”,a);
a—;
myfunc(a);

return;

}

main()

{

intb=35;

myfunc(b);

printf(“‘\n”);

}

were compiled and executed, which of these would appear on stdout?

1. no output - infinite recursion
. compile error

. 543210

54321

12345

012345

. none of these

No o e w

Figure 7: Sample Pre-test question

questions avoided those areas specific to the té€xvn section. In
particular, there was no mention of kd-trees, ray-object intersec-
tion tests, or parsing .ppm or .obj files. Rather, questions focused
on C++ code-reading, algorithm execution time order, and solving
small problems. An example question is shown in Figure 8.

In Table 1 we show the results of the t-test on the change from
pre-test to final exam. The embedded questions on the final exam(s)
were, of course, decidedly more difficult than those on the pre-
test, and so the magnitude of the mean change per section is, by
itself, not significant. Nevertheless, the difference between sections
is significant. It should also be noted that the sections suffered
different attrition rates, and so the final populations were no longer
the same size.

In Table 2 we show the results of the regression analysis. The co-
efficient of determination (R%) was 0.196928. The most important

What is the length of the shortest path from S to T in this network?

SO R L=
. [
~

Figure 8: Sample Post-test question

Table 2: Regression analysis on embedded final exam scores
regressor | estimate | standard dev. | t-ratio | p-value
constant | 0.499446 0.106333 4.697 | 0.000034

pre-test | 0.062996 0.143390 0.439 | 0.6629
class 0.176040 0.059004 2.984 | 0.0050

coefficient estimate is that for the class regressor, in that it shows
the benefit accrued from the téxvn treatment, which was signifi-
cant at the 1% level (p=0.0050).

An indirect assessment was also carried out. Walker and Fraser
[16] observed that numerous studies report a strong correlation be-
tween traditional student outcomes (e.g. grades, test scores) and
perceptions of classroom environments. The latter can be measured
with unobtrusive and time-saving survey instruments. Walker and
Fraser used factor analysis on field tests to develop a survey in-
strument of 34 ratings on six scales, instructor support, student in-
teraction and collaboration, personal relevance, authentic learning,
active learning, and student autonomy. Their instrument was tar-
geted at distance education.

We constructed a survey instrument with 19 questions that were
a composite of those suggested at http://oerl.sri.com/. The top-
ics included satisfaction, effectiveness, opportunity to learn, as-
signments, and engagement. Sample questions and mean scores
thereon are shown in Figure 9.

A positive correlation between attitude and post-test (embedded
final exam question) results, favoring the t€)yvn treatment, was
found on all questions except one. Those in the Téxvn class more
strongly favored the future use of a different set of software exam-
ples. Apparently, the singular focus held inadequate variation.

- I feel my classroom experience in this course generated enthusiasm
for the subject.

1) Very little 2) A little 3) Somewhat 4) Alot 5) A great deal
éxvn: 3.90 conventional: 3.00

- 1 feel my software development experience in this course gener-
ated enthusiasm for the subject.

1) Very little 2) A little 3) Somewhat 4) Alot 5) A great deal
téxvn: 3.14 conventional: 2.69

- I feel the software development experience in this class used
real-world examples.

1) Very little 2) Alittle 3) Somewhat 4) Alot 5) A great deal
tévn: 3.52 conventional: 2.38

Figure 9: Sample survey questions and results

6. CONCLUSIONS

We have presented the design of a new course in data structures,
a design that is consistent with the goals and foundations of the
€y vn method [4, 5, 9]. The single, semester-long, driving project
is construction of a C++ ray tracer that is capable of rendering, in
less than a minute, scenes that are built from more than a million
triangles. The driving project forces deep, performance-related in-
vestigations into many of the areas that are covered by traditional
data structures courses, but often covered at a much more superfi-
cial level.

In addition to the course design, there are two important con-
tributions of this effort. First, a formal, comparative evaluation
between the t€xvn method and the traditional method of teach-
ing data structures was conducted. At the beginning of the Fall
semester of 2009, data structures students were each randomly as-
signed to one of two classes, which were then taught that semester,
one with each method. Both pre-tests and post-tests were admin-
istered. The post-tests took the form of selected multiple choice
questions that were embedded in the final exams of both classes.
Analysis included a t-test on the score change from pre-test to post-
test and linear regression where the regressors included the pre-test
score and a class value (0 = conventional, 1 = T€x V1)), whose coef-
ficient then estimated the benefit of the t€yvn treatment. Both the
t-test and the regression analysis yielded statistically significant re-
sults showing that the €y vn method provided better learning out-
comes. An attitudinal survey was also carried out, and it showed,
in general, more positive attitudes associated with the téyvn treat-
ment, although a notable exception was the interest of the T€xvn
students in seeing a more varied collection of examples.

The second important contribution was the first achievement of
cognitive authenticity in T€xvm problem selection. The chosen task
was only one year removed from research results of the instructor,
and thus it represented an area of both high interest and significant
challenge.

The overall evidence in support of the téyvn method is com-
pelling. Nevertheless, caveats are in order. We believe that we
have provided a fair comparison, but it is difficult, perhaps impos-
sible, to control for instructor bias, motivation, interest, and enthu-
siasm, even if the same instructor were to teach both classes, and, of
course, we used different instructors. Moreover, we must acknowl-
edge that teaching with this method requires substantially more ef-
fort than a traditional, textbook-directed approach. If that same ad-
ditional effort were devoted to any other alternative method, would
the result not also be quite positive? Finally, we have observed
push-back from members of our own faculty whose research spe-
cialties are outside visual computing. They are both uncomfortable

with venturing into visual computing and unconvinced that appro-
priate rewards will be attached to the substantial additional effort
that must be expended.

Still, we remain hopeful that the additional benefits to student
learning outcomes, such as observed here, will ultimately carry the
day.

7. ACKNOWLEDGMENTS

This work was supported in part by the U.S. National Science
Foundation under Award 0722313.

8. REFERENCES
[1] J. L. Bentley. Multidimensional binary search trees used for

associative searching. Commun. ACM, 18(9):509-517, 1975.

Computing Accreditation Commission. 2009-2010 criteria

for accrediting computing programs.

http://www.abet.org/Linked Documents-UPDATE/Criteria

and PP/C001 09-10 CAC Ceriteria 12-01-08.pdf, 2008.

[3] S. Cunningham. Graphical problem solving and visual

communication in the beginning computer graphics course.

ACM SIGCSE Bulletin, 34(1):181 — 185, 2002.

T. Davis, R. Geist, S. Matzko, and J. Westall. téxvn: A first

step. ACM SIGCSE Bulletin, 36(1):125 — 129, 2004.

T. Davis, R. Geist, S. Matzko, and J. Westall. téxvn: Trial

phase for the new curriculum. ACM SIGCSE Bulletin,

39(1):415 - 419, 2007.

J. Dewey. Experience and education. The Macmillan

Company, New York, 1938.

B. Duch, S. Gron, and D. Allen. The Power of

Problem-Based Learning. Stylus Publishing, LLC, Sterling,

VA, 2001.

[8] R. Geist and J. Steele. A lighting model for fast rendering of

forest ecosystems. In Proc. of the IEEE Symposium on

Interactive Ray Tracing (RT0S8), pages 99-106, and back

cover, Los Angeles, California, August 2008.

S. Matzko. té€xvn and Quest-Oriented Learning. PhD thesis,

Clemson University, 2008.

[10] S. Matzko and T. Davis. Using graphics research to teach
freshman computer science. In SIGGRAPH *06: ACM
SIGGRAPH 2006 Educators program, page 9, New York,
NY, USA, 2006. ACM.

[11] T. Moller and B. Trumbore. Fast, minimum storage
ray-triangle intersection. Journal of Graphics Tools,
2(1):21-28, 1997.

[12] G. Organic-Software. Xfrogplants v 2.0. http://www
.xfrogdownloads.com/greenwebNew/products
/productStart.htm, 2008.

[13] J. Piaget. The development of thought: equilibration of
cognitive structures (translated by A. Rosin). Viking Press,
New York, 1977.

[14] L. B. Resnick. Learning in school and out. Educational
Researcher, 16(9):13-20, 1987.

[15] J.-J. Rousseau. Emile (translated by B. Foxley). Dutton, New
York, 1955.

[16] S. Walker and B. Fraser. Development and validation of an
instrument for assessing distance education learning
environments in higher education. Learning Environments
Research, 8:289-308, 2005.

[17] M. A. Weiss. Data Structures and Algorithm Analysis in
C++. Pearson/Addison-Wesley, Boston, MA, USA, 3rd
edition, 2006.

2

—

[4

—

(5

—

[6

—_

[7

—

[9

—

