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Abstract. A novel method for distinguishing classes of viewers from their ag-
gregated eye movements is described. The probabilistic framework accumulates
uniformly sampled gaze as Gaussian point spread functions (heatmaps), and mea-
sures the distance of unclassified scanpaths to a previously classified set (or sets).
A similarity measure is then computed over the scanpath durations. The approach
is used to compare human observers’s gaze over video to regions of interest
(ROIs) automatically predicted by a computational saliency model. Results show
consistent discrimination between human and artificial ROIs, regardless of either
of two differing instructions given to human observers (free or tasked viewing).

1 Introduction

A compelling means of analysis of human visual perception is drawn from the collec-
tion of eye movements over dynamic media, i.e., video. The video stream can either
be a scene captured by a forward-facing camera worn during the performance of some
natural task [1], or of film presented to the viewer [2]. Analysis of the former leads to
improved understanding of how humans function in the world, and in particular, how
vision is used in concordance with basic motor actions such as walking or reaching [3].
Analysis of the latter leads to better understanding of how artistic media is perceived,
and in turn, how its design and production can be altered to affect its perception.

Analysis of eye movements over dynamic media has largely been performed man-
ually, e.g., by hand-coding saccadic events as they occur in relation to events present in
the media such as scene cuts [4]. What is needed, and what this paper addresses, is an
automatic means of classification of disparate viewing patterns, or scanpaths—defined
as the temporal sequence of gaze or fixation coordinates cast over the stimulus.

This paper contributes a means of classification of scanpaths accumulated over tem-
poral event samples. Event samples happen to coincide with video frames in this in-
stance, but the technique can assume any sampling rate and is thus also applicable to
still imagery presented for extended viewing durations [5]. Applications of the approach
include gaze-based discrimination between classes of human viewers (e.g., experts from
novices—eye movements are known to be task-dependent [6]), or discrimination be-
tween human gaze and artificially predicted regions of interest, or ROIs. The paper
focuses on the latter, in a manner differing from previous work with images [7], distin-
guishing between perceptually salient and computationally salient gaze coordinates.



2 Background

Scanpath comparison can be classified as either content- or data-driven. The former
is largely based on regions of interest, or ROIs, identified a priori in the stimulus and
subsequently by associating those regions with fixations, leading to analysis of image
regions or elements fixated by the viewer. The latter approach, in contrast, is made on
scanpaths directly, independent of whatever was presented as the stimulus. An impor-
tant advantage of the latter is that it obviates the need for establishing a reference frame
within which the ROI stipulation must take place.

Consider two recent approaches to the scanpath comparison problem. The vector-
based similarity measure is content-driven, as it relies on the quantization of the stim-
ulus frame into an arbitrarily-sized 5×5 grid which serves as the method’s source of
ROI labeling [8]. A label is added to the scanpath stream whenever a fixation is present
within a grid cell. In contrast, the revisited string-editing approach is data-driven, as it
operates directly on scanpaths [9]. String (ROI) labels are determined by overlapping
fixation clusters. Both approaches consider fixation durations and are therefore poten-
tially suitable for analysis of gaze collected over dynamic media, however, their means
of scanpath aggregation are derived from pairwise vector or string comparisons. For
groups of viewers, considerable additional organization is required.

As an alternative to string-editing approaches, heatmaps have become a common
tool for visualization of eye tracking data [10,11]. To our knowledge, to date they have
not been successfully used for quantitative classification of aggregate eye movements.

Perhaps most similar to the present work are two previous efforts of calculation of
the “average scanpath” [12] and of the computation of the scanpath distance via the
Earth Mover’s Distance [13]. The former was based on string-based multiple sequence
alignment, although the derivative notion of variance (distance from the average) was
omitted. The latter relied on the conceptualization of a scanpath composed of “piles of
earth”, with a comparison scanpath represented by “holes”. The minimum amount of
energy required to move earth from piles to holes gave the scanpath similarity.

The present paper extends a framework for multiple scanpath comparison and clas-
sification [5]. Although the previous approach was inspired by dynamic media, it was
only implemented over still images viewed for very short durations. In this paper the
analysis framework is applied to dynamic media for which it was originally conceived,
namely video sequences. The resultant procedure may be conceptualized as a measure
of deviation, over time, of one or more scanpaths of unknown classification from a set
of scanpaths of known classification. This is similar to a prior effort based on machine
learning, which was also intended to act as a classifier, although its aim was to classify
content (i.e., image regions) [14], whereas the present approach is directed at classifi-
cation of the data (i.e., scanpaths).

3 Classification Framework

Following Airola et al.’s nomenclature [15], let D be a probability distribution over
the sample space Z = X × Y , with input space X and output space Y = {−1, 1},
where y ∈ Y denotes the labeling of the input x ∈ X as a non-class (x−∈X−) or class



member (x+∈X+), respectively. We define a classifier as a function CZ(x) that outputs
a set of threshold-based decisions Z = {z1, . . . , zm} ∈ Zm where zi = (xi, yi), for
the training set of m training examples X = {x1, . . . , xm} ∈ Xm.

There are three steps to building and evaluating the real-valued prediction function
CZ produced by a learning algorithm developed with fixed training set Z. First, sim-
ilarity scores are extracted from X . Second, a discrimination threshold h is computed
from the similarity scores assigning the positive class X+ to x if CZ(x) > h and the
negative class X− otherwise. Third, classifier reliability is gauged by the conditional
expected AUC, or AUC, the area under Receiver Operating Characteristic (ROC) curve,
A(CZ) = Ex+∼D+,x−∼D− [H(CZ(x+)− CZ(x−))] where H(a) is the Heaviside step
function, which returns 1 when a > 0, 1/2 when a = 0, and 0 when a < 0. In practice,
because the probability distribution D cannot be accessed directly, the AUC estimate Â
is calculated e.g., via cross-validation, or by the Wilcoxon-Mann-Whitney statistic:

Â(S, CZ) =
1

|S+||S−|
∑

xi∈S+

∑
xj∈S−

H(C{i}(xi)− C{j}(xj))

where S+ ⊂ S and S− ⊂ S are the positive and negative examples of the set S, and
C{i}(xi) is the classifier trained without the ith training example.

Along with AUC, classifier accuracy is reported by evaluating CZ(w) on test data
w ∈ W , assumed to be disjoint from X . Accuracy is defined as the ratio of correctly
classified examples of W (true positives and true negatives) to all classified examples.

Accuracy and AUC measures can be seen to correspond to two different metrics of
interest. The former is related to the quality of the learning algorithm, i.e., how well
on average CZ generalizes to new test and training data. The latter addresses how well
CZ(x) generalizes to future test examples once learned from the given training set. In
the present context, the latter is more of interest as it provides a better indication of
the discriminability of the given training data set against the test set or sets, i.e., does a
given scanpath class differ from another class or classes of scanpath sets.

3.1 Extracting Similarity Scores

The classifier’s similarity measure computes a scanpath’s deviation from a probabilis-
tic model of one (or more) class(es) of scanpaths classified a priori. Scanpath classes
can be operationalized arbitrarily, e.g., based on some characterization of viewers. The
classifier functions over dynamic stimuli, i.e., video, which may be considered as a
collection of static stimuli, i.e., frames. Scanpath similarity metrics developed for static
stimuli can thus be applied on a frame-by-frame basis and aggregated in some way (e.g.,
averaged). The trouble with prior vector- or string-based approaches is their reliance on
pairwise comparisons for aggregation. This leads to rather complicated bookkeeping
requirements for pairwise organization, e.g., labeling each pair as local, repetitive, id-
iosyncratic, or global based on the dyadic permutations of viewer and stimulus [7].

Presently, each frame is composed of a sampled set of gaze points (or fixations),
sampled from as many sets as there are scanpath classes, with each set composed of
scanpaths collected from multiple viewers. A per-frame similarity measure is then de-
rived and averaged over the duration of the video sequence to compute the total simi-
larity of an unclassified scanpath to the one or more sets of classified scanpaths.



Fig. 1. Heatmap of a classified scanpath set S at a discrete timestamp. As yet unclassi-
fied scanpaths’ (gray circles not used in heatmap generation) similarities are calculated
as the average Gaussian similarity, e.g., d(A,S) < d(B,S) in this example.

With video acting as the temporal reference frame, a scanpath s(t) is parametrized
by the frame timestamp t, such that s(t) = {(i(t), j(t)) | t ∈ [t− w, t + w]} for some
window w, with w = 0 identifying a single frame, yielding the scanpath’s 0+ gaze
points over a video frame at t.4 This event-driven model, effectively samples a scanpath
at a single point in time, and affords notational interchangeability between a gaze point,
fixation, and scanpath, when considered on a per-event, or in this case per-frame, basis.
A set of scanpaths S(t) = {s1(t), s2(t), . . . , sm(t)} is similarly parametrized to define
the combined set of gaze points over frame t from the scanpath set collected from m
viewers. Over each frame, multiple sets are represented, e.g., S+ member and S− non-
member sets (in the experiment described below, three such sets are established).

Modeling a classified scanpath s by a normally distributed point spread function
f(s) = 1/

√
2πσ2 exp

(
−s2/2σ2

)
produces the well-known heatmap scanpath visual-

ization (on a per-frame basis; see Fig. 1), typically visualized with the Gaussian kernel’s
support truncated beyond 2σ for computational efficiency [16]. Extending kernel sup-
port also defines the scanpath’s first moment µs =

∫∞
−∞ sf(s)ds so that the (Gaussian)

similarity of an unclassified scanpath s′ to s is estimated by its deviation

g(s′, µs) =
1√

2πσ2
exp

(
− (s′ − µs)

2

2σ2

)

with frame timestamp t made implicit and σ set to the expected eye tracker error, as
illustrated in Fig. 1. In practice, the above model is necessarily discrete and s is under-

4 With a 50 Hz eye tracking sampling rate and a common video refresh rate of 30 Hz, it is
assumed that a scanpath will yield at most two gaze point samples per frame; alternatively, if
operationalized by a sequence of fixations, a scanpath will yield a single fixation coordinate
per frame (or none if the frame happened to sample an inter-fixation saccade).



stood to be two-dimensional, s(t) = (i(t), j(t)), s(t) ∈ R2, with t denoting the frame
timestamp and (i, j) the image (video frame) coordinates.

The similarity of s′ to a set of classified scanpaths S (at t) is defined as

d(s′, S) =
1
|S|
∑
s∈S

g(s′, µs)

where the weighting factor 1/|S| is used for similarity score normalization. The mea-
sure d(s′, S) is averaged over the entire video sequence to estimate the mean similarity
of an unclassified scanpath to the classified scanpath set, d̄(s′, S) = 1/T

∑
t d(s′, S)

with t ∈ T , the sequence duration. The resultant mean similarity lies between 0 and 1,
but tends to fall near 0. Its value, however, is not as important as the probability that the
score lies within the expected distribution of scores for a specific class.

3.2 Computing the Classification Threshold

Gaussian similarity scores serve as input to the classification mechanism that estimates
an optimal discrimination threshold for scanpaths of unknown classification. An un-
classified scanpath is accepted by the classifier if its similarity score is higher than the
computed threshold.

The ROC curve plots the true positive response against the false positive response
of the threshold at each threshold level and provides two convenient facilities. First, it
facilitates the choice of an optimal threshold, by selecting the level at which the thresh-
old is closest to (0, 1), where the ratio of false positives to true positives is balanced.
Second, AUC indicates the classifier’s discriminative capability. Ideally, AUC should
equal unity (1), while a completely random classifier yields AUC close to 0.5. AUC
represents the probability of an arbitrarily-chosen class member obtaining a similarity
score greater than some arbitrarily-chosen non-class member.

3.3 Estimating Classifier Performance via Cross-Validation

A typical strategy used for estimating the performance, or reliability, of a classifier,
when operating in a small sample setting, is cross-validation.5 Specifically, leave-pair-
out cross-validation, or LPOCV, is adopted since the intent is to estimate the conditional
AUC as an indicator of the classifier’s performance while avoiding the pitfalls associ-
ated with pooling and averaging of LOOCV (leave-one-out cross-validation) [15].

Cross-validation is performed by repeatedly partitioning the data set into two non-
overlapping parts: a training set and a hold-out set. For each partitioning, the hold-out
set is used for testing while the remainder is used for training. Accuracy is computed as
the percentage of hold-out sets successfully classified. For each partitioning, LPOCV
leaves out at a time from the training set each possible positive-negative pair of training
examples. With LPOCV, AUC is estimated as

Â(X, CZ) =
1

|X+||X−|
∑

si∈X+

∑
sj∈X−

H(C{i,j}(si)− C{i,j}(sj))

5 Scanpath data sets generally number in the tens, whereas classifiers tend to operate on data
sets numbering in the thousands.



(a) Seq. A, chosen for its mis-
placed pair of modern sneakers.

(b) Seq. B, chosen for its
unfamiliarity.

(c) Seq. C, chosen for its large
number of prominent faces.

Fig. 2. Frames from stimulus sequences. Seqs. A and C were excerpts from Sofia Cop-
pola’s Marie Antoinette © 2006, Columbia Pictures and Sony Intl., obtained with per-
mission for research purposes by the Universitat Autònoma de Barcelona. Seq. B shows
the mouse vasculature in the spinal cord at 0.6×0.6×2 µm resolution with blood vessels
stained black, as obtained by a knife-edge microscope (courtesy of Texas A&M).

where X+ ⊂ X and X− ⊂ X are the positive and negative examples of the training
set X , C{i,j}(si) is the classifier trained without the ith and jth training examples, and

H(a) is the Heaviside step function. Because AUC estimate Â(X, CZ) is equivalent to
the Wilcoxon-Mann-Whitney U statistic, AUC > 0.7 is generally considered a statisti-
cally significant indicator of discriminability, although a test of significance should be
performed by computing the standardized value under assumption of normality of class
distributions.

The training data generally consists of multiple classes, very often two, but possi-
bly more. The current approach generates multiple classifiers, each trained to a single
class, with all other classes acting as non-class training data. Generally, when there are
more than two classes, a “one-to-many” comparison may be carried out first, with all
non-class training data pooled into the negative class set. Should the classifier AUC be
significant, “one-to-one” comparisons can then be performed, in a manner analogous to
ad-hoc pairwise t-tests following ANOVA.

4 Empirical Evaluation

The classifier was applied to scanpaths drawn from three classes: two from human ob-
servers distinguished by differing tasks, and the third from a bottom-up saliency model
(simulating artificial observers), developed by Itti et al. [17]. The model is part of iLab’s
Neuromorphic Visual C++ Toolkit and is freely available online.6 At the model’s core
is a neuromorphic simulation that predicts elements of a visual scene that are likely to
attract the attention of human observers. This has wide applications in machine vision,
e.g., automated target detection in natural scenes, smart image compression, etc. The
model was compared to human scanpaths captured over video sequences.

6 http://ilab.usc.edu/bu/, last accessed Aug., 2010.



Stimulus. Stimuli consisted of three video sequences, named A, B, and C, shown to hu-
man observers in Latin square counterbalanced order, with approximately each third of
the viewers seeing the sequences in order {A,B, C}, {B,C,A}, or {C,A, B}. Seq. A
contained a misplaced modern pair of sneakers in an 18th century setting, while a mod-
ern popular song played in the background. Seq. C was from the same feature film,
with scenes containing a large number of human faces. Seq. B was composed of CT-
like scans of the mouse vasculature in the spinal cord. Select frames from the clips are
shown in Fig. 2.

Apparatus. Eye movements were captured by a Tobii ET-1750 eye tracker, a 17 inch
(1280 × 1024) flat panel with built-in eye tracking optics. The eye tracker is binocular,
sampling at 50 Hz with 0.5◦ accuracy.

Participants. Twenty-seven college students volunteered in the study (seven male,
twenty female). Participants’ ages ranged from 18 to 21 years old.

Procedures. Participants sat in front of the eye tracker at about 60 cm distance. Follow-
ing 9-point calibration, subjects were asked to naturally watch the first of two viewings
of each of the three sequences (amounting to “free viewing”). They then received view-
ing instructions prior to the second viewing of the same sequence. For seq. A, they were
asked to look for anything unusual (they were meant to notice the sneakers). For seq. B,
they were asked to focus on the vascular stains (they were meant to avoid the aberrant
artifacts at the top and sides of the frames). For seq. C, they were asked to avoid looking
at faces (they were meant to simulate autism, since autistic viewers have been shown to
exhibit reduced face gaze [18]).

Artificial gaze points over video were generated by the iLab Neuromorphic Toolkit.
The toolkit contains a program called ezvision that can be executed on static images to
produce a primary point of focus that is expected to match the visual attention of a hu-
man viewing the scene, followed by other salient points in the scene that are connected
by a trajectory depending on the exposure time stipulated. However, the model also
operates in video mode by extracting images from the video at the video frame rate.
This causes the algorithm to be forced to find a salient point within the frame within the
frame’s exposure duration. For a typical video, this means the algorithm has only 33 ms
to arrive at a salient viewpoint in the frame.

To compare the model’s prediction with gaze points captured from human observers
ezvision was run in video mode with the timestep set to 33 ms for the faces and shoes
video, and 40 ms for the mouse video. Itti’s algorithm is able to produce predictions
with small amounts of noise added to the predictions [17]. This helped simulate results
for 27 hypothetical users, by running ezvision on each video 27 times with random noise
added to the predictions made each time.

5 Results

Classifier AUC and accuracy shows significantly consistent discriminability (AUC >
0.7) between perceptual (top-down) and computational (bottom-up) saliency (see Tab. 1).



Table 1. Results composed of classifier accuracy (ACC) and area under ROC curve
(AUC) for one-to-many and one-to-one comparisons of two classes of viewers (“free
viewing” and tasked) vs. the computational model for each of the three video stimuli.

One-to-many Cross-Validation One-to-one Cross-Validation
Perceptual (pooled)

vs. computational saliency
Perceptual “free viewing”
vs. computational saliency

Perceptual tasked
vs. computational saliency

A B C A B C A B C
ACC 1.000 1.000 0.997 1.000 0.999 0.999 0.999 1.000 1.000
AUC 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Consistency refers to the evaluation of the Heaviside step function H(a), where the
classifier correctly discriminates between human and artificial scanpath classes in all
of the m × (m − 2) cross-validation partitionings, over all frames of each of the three
video stimuli. The classifier is not as consistent in distinguishing between the two hu-
man scanpath classes, able only to distinguish between them in two of the three cases
(Seq. B and C; these results are discussed at length elsewhere [19]).

Human observers tend to exhibit extreme preferential behavior over Seq. C, i.e.,
when free viewing, heatmap visualization (see Fig. 3) suggests most viewers fixate
faces, particularly in “close shots”. Tasked viewers, in contrast, who were told to avoid
faces, did so, but without apparent agreement on scene elements. Both strategies employ
top-down directives that are apparently different from the strategy employed by the
computational saliency model. The model fails to match human scanpaths over Seq. B
even though it seems well suited to this stimulus (high contrast elements and sudden
onset stimulus). Visualization suggests that both the model’s and free viewers’ gaze fell
atop the sudden onset aberrant artifacts at the video frame edges. However, once humans
were tasked to avoid these artifacts, they did so, whereas the model was not privy to
this top-down goal-directed information. In either case, insufficient gaze overlap was
detected over the length of this short video clip to diminish classifier output below unity.
Seq. A yields similarly consistent discriminability results. Verbal instructions had little
impact on perturbing human gaze (tasked scanpaths were not discriminable from free
viewers’ scanpaths by the classifier). Seq. A appears sufficiently complex to foil the
saliency model from accurately predicting features selected by human observers.

6 Discussion

The saliency model works well on simple videos/images of traffic signals, or on tracks
of single or multiple persons moving against fairly non-complex backgrounds, or in
interactive visual environments [20]. However, for complex video segments with multi-
ple objects of interest in the foreground and background and with rapid motion between
the frames such as the Marie Antoinette videos, the bottom-up saliency model’s gaze
selection differs from that of natural viewing by humans. Two hypothetical parame-
ters describe the extent of success/failure of the model: (1) the complexity of a single
frame in the video, and (2) the amount of motion (apparent or real) between frames.
When the two are low (simple images with small motion between frames), the model is



(a) Seq. A. (b) Seq. B. (c) Seq. C.

Fig. 3. Heatmap visualizations of two excerpted video frames viewed freely (top row),
with task (middle row) or by the saliency model (bottom row).

likely to match human gaze points. However, when the complexity of the image and/or
inter-frame motion increase(s), results diverge. The model could probably be used to
describe the human visual system’s tropism to salient points in a video, but only under
fairly simple conditions. Once video complexity increases, bottom-up saliency can be
clearly distinguished from tasked as well as natural viewing.

Given sufficiently clear instructions (e.g., avoid looking at faces), the tropism of the
human visual system, driven by top-down cognitive processes, differs from free view-
ing such that it can generally be distinguished by the classifier. The saliency model is,
in contrast, task-independent and models bottom-up processes. Although it is possible
to modify the relative feature weights in the construction of the saliency map with su-
pervised learning to achieve some degree of specialization, it is at present unlikely that
such specialization is sufficient to adequately model top-down visual processes.

7 Conclusion

A classification algorithm was developed to distinguish scanpaths collected over dy-
namic media. The algorithm successfully discriminated between perceptual and com-
putational saliency over video sequences, illustrating the disparity between top-down
visual processes and their bottom-up computational models.
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