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1. Abstract 
Interactive visualization tools for models of computation 
provide a more compelling means of exploration and 
feedback than traditional paper and pencil methods in 
theory of computation courses. The Java Computability 
Toolkit (JCT) is introduced here as a new teaching aide 
and as an exploratory student’s supplement to a course on 
theory of computation. JCT consists of two Java multiple- 
window, web-accessible, graphical environments, allowing 
the construction and simulation of finite automata and 
Turing machines. This paper discusses JCT’s use, design, 
and applications in teaching. 
2. Introduction and background 
A new graphical simulation of finite automata (FA) and 
Turing machines (TM) is introduced, dubbed the Java 
Computability Toolkit (JCT). JCT is a multiple-window, 
web-accessible program animator [5] providing consistent 
appearance and functionality across platforms. The finite 
automata environment models all binary and unary closure 
operations and offers a unique circuit board representation 
of constructed FAs. The Turing machine environment 
utilizes a high-level notational specification providing 
hierarchical machine organization with locally or 
globally scoped variables. Incorporating both 
environments, JCT forms an integrated framework for 
web-accessible visualization of fundamental theory of 
computability concepts. 

Machines in each environment contain specification and 
author information, allowing collection and distribution 
among students, colleagues, and classes at different 
universities. JCT can be used during lectures or laboratory 
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sections to demonstrate the construction and function of 
various machines in which students are encouraged to 
participate. 

Theoretical models of computation are studied in the 
academic computer science community and often form the 
major portion of a core course in undergraduate and 
graduate degree programs. FAs and TMs are among the 
most common models in this discipline and, in order to 
fully develop a solid understanding of them, direct 
implementation and experimentation is necessary. This is 
usually undertaken with pencil and paper sketches which 
often results in messy, unmanageable machines that are 
difficult to follow, take a long time to create, and are 
virtually impossible to modify. Performing a computation 
on large machines is also a time consuming, sensitive task 
that can often lead to errors and frustration. 

The ability to construct, modify, and perform simulated 
computations on machines may save students time and 
relieve some of this frustration. A graphical computer 
environment allows students to create machines 
interactively and to quickly respond to given feedback. 
Thus learning about models of computation is made more 
practical and allows a level of exploration and creativity 
not possible using traditional paper and pencil methods. 
This approach to visualization and interaction in computer 
science education has been used in the study of data 
structures [12], the introduction of language features and 
selected topics in introductory computer science [l], the 
construction of algorithms through animation [15], and, 
most relevant to this paper, in the study of formal 
languages and models of computation [3,13,16]. In [18] 
the role of such visualization techniques in computer 
science education is recognized as potentially useful for 
teaching and learning, especially where students are 
encouraged to learn on their own. Educational software is 
beginning to shift toward web-based design, simplifying 
installation and platform compatability issues, and 
providing immediacy of access. Examples and discussion 
of this shift can be found in [4] and [7]. 

There are a number of software packages for simulating 
finite automata and Turing machines. Most, however, 
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cannot be run through a web browser, are specifically 
designed to run on one platform, and require the user to 
install, and in one case, pay for the software. Turing’s 
World [2] is a commercial package allowing the user to 
create TMs and FAs on the Macintosh. Both models are 
created in the same environment in which a state-based 
notation is used. This environment also allows the user to 
look into the computations of any sub-machine. Visual 
Turing (available at http://apolo.cs.pub.ro/-cheran/vtu- 
ring/) allows the creation of TMs using a partial high level 
notation with multiple variables on a Windows platform. 
Deus Ex Machina [17] also runs on Windows and allows 
creation and simulation of seven different models of 
computation with a common state-based notation very 
similar to that of Turing’s World. DynaLab, a finite state 
animator, is in the process of being ported to the web [5,6]. 
JFLAP (available at http://www.cs.duke.edu/ 
-rodger/tools/jflap/) was the first powerful Java-based tool 
to allow simulation of FAs, pushdown automata (PDAs), 
and TMs. The most recent version uses a state-based 
notation for all models, and allows conversion of a 
nondeterministic FA (NFA) to a deterministic FA (DFA), 
minimization of a DFA, and conversion of an NFA to a 
regulargrammar. 

JCT is a new multiple-window, Swing-based (see 
section 3) software package allowing construction of finite 
automata and Turing machines graphically on the 
computer. By providing arbitrary input, students can see 
how a machine works on that input, step by step, through 
immediate visual feedback. The use and features of JCT 
are discussed in the next section. Section 4 discusses the 
design of JCT and section 5 discusses future work and 
gives concluding remarks. 

3. JCT 
JCT takes advantage of the new Swing components 
(currently available at http://java.sun.com/products/jfc/) 
which allow true platform independent graphical user 
interfaces. These components are still under development 
and will be a core part of the new Java Development Kit, 
version 1.2, scheduled for first offtcial release in late 1998. 
Previous to Swing, Java was limited to its dependence on 
AWT (Abstract Windowing Toolkit), which is a thin layer 
of code that maps to platform specific components at run- 
time. Thus, with AWT, a Java program appears and often 
functions differently from platform to platform. Swing 
components are written entirely in Java and have the same 
appearance and functionality no matter what platform they 
are used on. Swing components also bring to Java a much 
more powerful set of controls in which components can 
overlap and windows can contain sets of sub-windows. By 
leveraging this power, JCT allows users to build and 
perform operations on multiple machines in separate 
windows all contained within one parent frame, resulting 

in a high degree of organization both programatically and 
visually. 

The ability to run JCT through a browser is paramount. 
Because the Swing components are so new, browsers have 
not yet been built to directly support them. The Java 
Plugin (currently available at http://java.sun.com/products/ 
plugin/) provides browsers with an alternative Java virtual 
machine which has built-in support for Swing. If the user 
does not have the Plugin it is automatically installed before 
JCT is loaded. 
JCT offers the following simulation features: 

Complete set of binary and unary FA closure 
operations resulting in new usable and re-con.tigurable 
machines. 

Unique Java Automata Toolkit (JAT) [8,9] circuit 
board representation of FAs. 

High-level notational specification of TMs, with 
machine grouping and sub-machine nesting to any 
level, similar to that introduced in [lo] and used in 
[Ill. 
Local and global variable scoping: a method of 
syntactically simplifying TM representions by all- 
owing the storage of tape square contents to be unique 
to, or passed through from, sub-machines at any level. 

Signed applet web browser execution providing 
saving, loading, and printing functionality. 

A multiple-window, multiple-environment interface 
with an easily extendable, pluggable design. 

Movable transitions and transition groupings. 

These features are discussed in 3.1, 3.2, and section 4. 

3.1 Finite automata environment 
The JCT finite automata environment uses a multiple 
window interface allowing the user to create machines 
graphically on a canvas by positioning states with single or 
multi-symbol transitions. Nonfinal states are blue and 
final states are red. The initial state is represented by a 
yellow arrow-head attachment. (JCT is intended to be used 
with a color display.) Transitions with common source 
and destination states are grouped together and can be 
automatically or manually placed by the user. Transitions 
on the empty string are represented by just a “-” similar to 
JFLAP. 

Transition group boxes contain arrows that always 
point to the destination state. Each transition within a 
group is separated into its own box and can be modified or 
removed without effecting any others in the group. The 
working alphabet is implicitly defined by all transition 
symbols used in the current FA but can be manually 
specified by the user. Figure 1 shows an NFA accepting 
the language a*aa*ua*bba*. 
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Also shown in Figure 1 is the operations toolbar which
allows, in order from left to right and top to bottom,
rendering of the currently selected FA in the unique JAT
circuit board diagram, conversion to a DFA,
Minimization, Concatenation, Complement, Kleene Star,
Intersection, Union, setting all transitions to manual
positioning, and setting all transitions to automatic
positioning. In cases where a binary operation is chosen, a
dialog is displayed allowing the user to choose the second

resulting machine of any operation is displayed in a new
window within the environment, is completely modifiable
(with the exception of the circuit board diagram), and can
be used in subsequent operations. Machines are never
modified as a result of performing an operation to allow
comparison between input and output.

The JAT circuit board diagram introduces a unique way
of cleanly representing finite automata. Figure 2 shows
the machine of Figure 1 in the circuit board diagram
representation.

Although this is not a modifiable machine which can be
used in operations or computations, it is very useful in
organizing large automata into a more perspicuous format.
Transitions from a low numbered state to a higher
numbered state are placed below the diagonal and those
from a higher to a lower numbered state are placed above
the diagonal. Loop transitions are contained in their own
sub-box. Transitions on the empty string are represented
by “\e” in this diagram.

Given any FA the user can specify an input and JCT
will perform the computation returning either “Accepted’
or “Not Accepted”. The computation will abort if a very
high degree of nondeterminism is encountered. If an input
is accepted, an optimum (shortest) acceptance path is
displayed and the option to graphically trace through each
step of the computation is presented to the user. Multiple
traces can be simultaneously active allowing detailed
comparison of machine functionality.

3.2 Turing machine environment
The Turing machine environment uses a multiple window
interface and allows the user to create high level TMs
graphically by organizing machines into groups on a
canvas and creating transitions between them [10]. This is
a hierarchical notation in which increasingly complex
machines are built from simpler materials [11]. (Our
notation is a unique version of that introduced in [10] and
used in [11).

The user is presented with five basic machines and is
able to incorporate any pre-existing machine as a sub-
machine (e.g., one previously saved to disk). These are
selected from a toolbar shown in Figure 3. The basic
machines consist of move left, move right, move left until
a specified symbol, move right until a specified symbol,
and write a specified symbol. Each sub-machine is
represented as a numbered icon. Figure 4 demonstrates
how the user can be reminded of what a submachine is by
placing the mouse over this icon (in this case a copy.TM
is identified). Figure 5 illustrates the optional machine

group boundaries that can be toggled and Figure 6 shows
how a machine can be inserted at any position within a
group. The initial machine is represented by a yellow
arrow-head attachment.

All transitions from one machine to the same
destination machine are grouped together and can be
manually positioned by the user, or automatically placed
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by the environment (Figure 7 shows manually placed
transitions and Figure 8 shows an automatically placed
transition). Because the TMs created in this environment
are deterministic, several rules are enforced by the
environment to prevent the user from creating a
nondeterministic Turing machine. Only one transition per
symbol can be defined out of any machine on the canvas.
A special transition called the “default” transition, also
referred to as the “not” transition, is represented by a “-”
and is defined to be a transition on all symbols except
those explicitly defined out of the current machine. The
default transition shown in Figure 7 is defined to be a
transition on all symbols except “#” since there already is
an explicitly defined transition on the symbol “#” out of
the same machine.

Figure 7: Default Transition
Figure 8: Variable

Transition

A transition on a variable, shown in Figure 8, is defined
to be the same as a default transition but it stores the tape
symbol at the current head position into that variable.
This variable can then be used in a write machine at any
point to write the stored symbol to the tape. Variables and
the distinction between local and global scoping is
discussed in section 3.2.2.

3.2. 1 Tape input and output
The Turing machine environment tape I/O mechanism
consists of two (practically) infinite two-way tapes. One

tape is used strictly as an Input tape and is modified only
by the user. When a computation is invoked the results are
displayed in the second tape which is used strictly as an
uneditable Output tape. Figure 9 shows part of the Input
and Output tapes and some of their controls.

There are several different methods of performing a
computation on a TM. The user can choose ‘Execute’
which will perform operations continuously until a halt
state is reached or 500 operations are performed,

whichever occurs first. If 500 operations are performed
without reaching a halt state the user is prompted to
continue or stop the computation.

The user can ‘Run’ a computation which will perform
one operation every 0.5 seconds updating the Output tape
as it proceeds. When toggled, the ‘Follow Head’ checkbox
locks the user’s view on the Output tape head to avoid
losing site of it. A ‘Trace’ can also be initiated which
allows the user to walk through a computation step by step.

3.2.2 Local and global variables
Variables are a kind of “syntactic sugar” that greatly
simplify the presentation of machines. For instance, if the
alphabet consists of a, b, and c then the machine shown in
Figure 10 is a simplification of the machine shown in
Figure 11.

Figure 10 Figure 11 Figure 12

As a TM is constructed its variables may be locally or
globally scoped. Global variables are used as a means of
passing information to and from sub-machines. For
instance, if alpha was declared global in the machine of
Figure 10 then the machine shown in Figure 12, using the
machine of Figure 10 as a submachine, obtains the
contents of alpha from within the submachine. If alpha
was declared local in the machine of Figure 10 this
information would not pass through to the alpha in the
machine of Figure 12. So the ability to scope variables
extends the expressive power of the high level notation
discussed earlier.

4. JCT design
JCT is designed with a pluggable framework. Each
environment resides in its own tab as illustrated in Figure
13. By creating new environments and placing each in its
own new tabbed layer, JCT can be expanded to contain any

number of self-contained environments. Not only does this
aleviate the burden on the future developer, it also allows
each environment to be used simultaneously without
cluttering up the users’ desktop with different frames.

Both the finite automata and Turing machine environ-
ments have distinct application (GUI) and library layers.
The construction of the application layer is discussed
further in [14]. An overview of the construction of the
library layer that provides most of the operational algo-
rithms for both environments can be found in [8] and [9].
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5. Conclusions and future work 
JCT contains environments for the construction and 
simulation of finite automata and Turing machines that 
can be used as a supplement to any theory of computation 
course. Its ease of use provides students with a powerful 
visual aid to learning and may equip students with a less 
frustrating and time consuming way to experiment with 
these models. 

JCT has received positive feedback from faculty at 
SUNY Institute of Technology where it will be integrated 
into this year’s foundations of computation course. A 
performance study of students using JCT will be held there 
as well. 

A PDA environment is currently under development for 
future addition to JCT. 

JCT is available at http://turing.sunyit.edu/JCT 
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