
A Java-based Tool for Reasoning About Models of Computation
Through Simulating Finite Automata and Turing Machines

Matthew B. Robinson Jason A.Hamshar
WebScope, Inc. Sterling Software

3977 E. Bayshore Rd. Beeches Technical
Suite 200 Campus, Rt. 26N

Palo Alto, CA 94303 Rome, NY 13440
650.965.2500 315.336.0500

matQwebscope3d.com jason-hamshare
itd.steriing.com

1. Abstract
Interactive visualization tools for models of computation
provide a more compelling means of exploration and
feedback than traditional paper and pencil methods in
theory of computation courses. The Java Computability
Toolkit (JCT) is introduced here as a new teaching aide
and as an exploratory student’s supplement to a course on
theory of computation. JCT consists of two Java multiple-
window, web-accessible, graphical environments, allowing
the construction and simulation of finite automata and
Turing machines. This paper discusses JCT’s use, design,
and applications in teaching.
2. Introduction and background
A new graphical simulation of finite automata (FA) and
Turing machines (TM) is introduced, dubbed the Java
Computability Toolkit (JCT). JCT is a multiple-window,
web-accessible program animator [5] providing consistent
appearance and functionality across platforms. The finite
automata environment models all binary and unary closure
operations and offers a unique circuit board representation
of constructed FAs. The Turing machine environment
utilizes a high-level notational specification providing
hierarchical machine organization with locally or
globally scoped variables. Incorporating both
environments, JCT forms an integrated framework for
web-accessible visualization of fundamental theory of
computability concepts.

Machines in each environment contain specification and
author information, allowing collection and distribution
among students, colleagues, and classes at different
universities. JCT can be used during lectures or laboratory

Permission to make digital-or hardcopies of all or part oi this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission end/or a fee.
SIGCSE ‘99 3/99 New Orleans, LA, USA
B 1999 ACM l-581 13-065-6/99/0003...$5.00

Jorge E. Novillo Andrew T.
SUNY Institute of

Technology
P.O. Box 3050

Duchowski
Clemson University
451 Edwards Hall

Utica, NY 135043050
315.792.7352

Clemson, SC 29634-1906
664.656.7677

jorge@sunyit.edu andrewd@
cs.clemson.edu

sections to demonstrate the construction and function of
various machines in which students are encouraged to
participate.

Theoretical models of computation are studied in the
academic computer science community and often form the
major portion of a core course in undergraduate and
graduate degree programs. FAs and TMs are among the
most common models in this discipline and, in order to
fully develop a solid understanding of them, direct
implementation and experimentation is necessary. This is
usually undertaken with pencil and paper sketches which
often results in messy, unmanageable machines that are
difficult to follow, take a long time to create, and are
virtually impossible to modify. Performing a computation
on large machines is also a time consuming, sensitive task
that can often lead to errors and frustration.

The ability to construct, modify, and perform simulated
computations on machines may save students time and
relieve some of this frustration. A graphical computer
environment allows students to create machines
interactively and to quickly respond to given feedback.
Thus learning about models of computation is made more
practical and allows a level of exploration and creativity
not possible using traditional paper and pencil methods.
This approach to visualization and interaction in computer
science education has been used in the study of data
structures [12], the introduction of language features and
selected topics in introductory computer science [l], the
construction of algorithms through animation [15], and,
most relevant to this paper, in the study of formal
languages and models of computation [3,13,16]. In [18]
the role of such visualization techniques in computer
science education is recognized as potentially useful for
teaching and learning, especially where students are
encouraged to learn on their own. Educational software is
beginning to shift toward web-based design, simplifying
installation and platform compatability issues, and
providing immediacy of access. Examples and discussion
of this shift can be found in [4] and [7].

There are a number of software packages for simulating
finite automata and Turing machines. Most, however,

105

cannot be run through a web browser, are specifically
designed to run on one platform, and require the user to
install, and in one case, pay for the software. Turing’s
World [2] is a commercial package allowing the user to
create TMs and FAs on the Macintosh. Both models are
created in the same environment in which a state-based
notation is used. This environment also allows the user to
look into the computations of any sub-machine. Visual
Turing (available at http://apolo.cs.pub.ro/-cheran/vtu-
ring/) allows the creation of TMs using a partial high level
notation with multiple variables on a Windows platform.
Deus Ex Machina [17] also runs on Windows and allows
creation and simulation of seven different models of
computation with a common state-based notation very
similar to that of Turing’s World. DynaLab, a finite state
animator, is in the process of being ported to the web [5,6].
JFLAP (available at http://www.cs.duke.edu/
-rodger/tools/jflap/) was the first powerful Java-based tool
to allow simulation of FAs, pushdown automata (PDAs),
and TMs. The most recent version uses a state-based
notation for all models, and allows conversion of a
nondeterministic FA (NFA) to a deterministic FA (DFA),
minimization of a DFA, and conversion of an NFA to a
regulargrammar.

JCT is a new multiple-window, Swing-based (see
section 3) software package allowing construction of finite
automata and Turing machines graphically on the
computer. By providing arbitrary input, students can see
how a machine works on that input, step by step, through
immediate visual feedback. The use and features of JCT
are discussed in the next section. Section 4 discusses the
design of JCT and section 5 discusses future work and
gives concluding remarks.

3. JCT
JCT takes advantage of the new Swing components
(currently available at http://java.sun.com/products/jfc/)
which allow true platform independent graphical user
interfaces. These components are still under development
and will be a core part of the new Java Development Kit,
version 1.2, scheduled for first offtcial release in late 1998.
Previous to Swing, Java was limited to its dependence on
AWT (Abstract Windowing Toolkit), which is a thin layer
of code that maps to platform specific components at run-
time. Thus, with AWT, a Java program appears and often
functions differently from platform to platform. Swing
components are written entirely in Java and have the same
appearance and functionality no matter what platform they
are used on. Swing components also bring to Java a much
more powerful set of controls in which components can
overlap and windows can contain sets of sub-windows. By
leveraging this power, JCT allows users to build and
perform operations on multiple machines in separate
windows all contained within one parent frame, resulting

in a high degree of organization both programatically and
visually.

The ability to run JCT through a browser is paramount.
Because the Swing components are so new, browsers have
not yet been built to directly support them. The Java
Plugin (currently available at http://java.sun.com/products/
plugin/) provides browsers with an alternative Java virtual
machine which has built-in support for Swing. If the user
does not have the Plugin it is automatically installed before
JCT is loaded.
JCT offers the following simulation features:

Complete set of binary and unary FA closure
operations resulting in new usable and re-con.tigurable
machines.

Unique Java Automata Toolkit (JAT) [8,9] circuit
board representation of FAs.

High-level notational specification of TMs, with
machine grouping and sub-machine nesting to any
level, similar to that introduced in [lo] and used in
[Ill.
Local and global variable scoping: a method of
syntactically simplifying TM representions by all-
owing the storage of tape square contents to be unique
to, or passed through from, sub-machines at any level.

Signed applet web browser execution providing
saving, loading, and printing functionality.

A multiple-window, multiple-environment interface
with an easily extendable, pluggable design.

Movable transitions and transition groupings.

These features are discussed in 3.1, 3.2, and section 4.

3.1 Finite automata environment
The JCT finite automata environment uses a multiple
window interface allowing the user to create machines
graphically on a canvas by positioning states with single or
multi-symbol transitions. Nonfinal states are blue and
final states are red. The initial state is represented by a
yellow arrow-head attachment. (JCT is intended to be used
with a color display.) Transitions with common source
and destination states are grouped together and can be
automatically or manually placed by the user. Transitions
on the empty string are represented by just a “-” similar to
JFLAP.

Transition group boxes contain arrows that always
point to the destination state. Each transition within a
group is separated into its own box and can be modified or
removed without effecting any others in the group. The
working alphabet is implicitly defined by all transition
symbols used in the current FA but can be manually
specified by the user. Figure 1 shows an NFA accepting
the language a*aa*ua*bba*.

106

Also shown in Figure 1 is the operations toolbar which
allows, in order from left to right and top to bottom,
rendering of the currently selected FA in the unique JAT
circuit board diagram, conversion to a DFA,
Minimization, Concatenation, Complement, Kleene Star,
Intersection, Union, setting all transitions to manual
positioning, and setting all transitions to automatic
positioning. In cases where a binary operation is chosen, a
dialog is displayed allowing the user to choose the second

resulting machine of any operation is displayed in a new
window within the environment, is completely modifiable
(with the exception of the circuit board diagram), and can
be used in subsequent operations. Machines are never
modified as a result of performing an operation to allow
comparison between input and output.

The JAT circuit board diagram introduces a unique way
of cleanly representing finite automata. Figure 2 shows
the machine of Figure 1 in the circuit board diagram
representation.

Although this is not a modifiable machine which can be
used in operations or computations, it is very useful in
organizing large automata into a more perspicuous format.
Transitions from a low numbered state to a higher
numbered state are placed below the diagonal and those
from a higher to a lower numbered state are placed above
the diagonal. Loop transitions are contained in their own
sub-box. Transitions on the empty string are represented
by “\e” in this diagram.

Given any FA the user can specify an input and JCT
will perform the computation returning either “Accepted’
or “Not Accepted”. The computation will abort if a very
high degree of nondeterminism is encountered. If an input
is accepted, an optimum (shortest) acceptance path is
displayed and the option to graphically trace through each
step of the computation is presented to the user. Multiple
traces can be simultaneously active allowing detailed
comparison of machine functionality.

3.2 Turing machine environment
The Turing machine environment uses a multiple window
interface and allows the user to create high level TMs
graphically by organizing machines into groups on a
canvas and creating transitions between them [10]. This is
a hierarchical notation in which increasingly complex
machines are built from simpler materials [11]. (Our
notation is a unique version of that introduced in [10] and
used in [11).

The user is presented with five basic machines and is
able to incorporate any pre-existing machine as a sub-
machine (e.g., one previously saved to disk). These are
selected from a toolbar shown in Figure 3. The basic
machines consist of move left, move right, move left until
a specified symbol, move right until a specified symbol,
and write a specified symbol. Each sub-machine is
represented as a numbered icon. Figure 4 demonstrates
how the user can be reminded of what a submachine is by
placing the mouse over this icon (in this case a copy.TM
is identified). Figure 5 illustrates the optional machine

group boundaries that can be toggled and Figure 6 shows
how a machine can be inserted at any position within a
group. The initial machine is represented by a yellow
arrow-head attachment.

All transitions from one machine to the same
destination machine are grouped together and can be
manually positioned by the user, or automatically placed

107

by the environment (Figure 7 shows manually placed
transitions and Figure 8 shows an automatically placed
transition). Because the TMs created in this environment
are deterministic, several rules are enforced by the
environment to prevent the user from creating a
nondeterministic Turing machine. Only one transition per
symbol can be defined out of any machine on the canvas.
A special transition called the “default” transition, also
referred to as the “not” transition, is represented by a “-”
and is defined to be a transition on all symbols except
those explicitly defined out of the current machine. The
default transition shown in Figure 7 is defined to be a
transition on all symbols except “#” since there already is
an explicitly defined transition on the symbol “#” out of
the same machine.

Figure 7: Default Transition
Figure 8: Variable

Transition

A transition on a variable, shown in Figure 8, is defined
to be the same as a default transition but it stores the tape
symbol at the current head position into that variable.
This variable can then be used in a write machine at any
point to write the stored symbol to the tape. Variables and
the distinction between local and global scoping is
discussed in section 3.2.2.

3.2. 1 Tape input and output
The Turing machine environment tape I/O mechanism
consists of two (practically) infinite two-way tapes. One

tape is used strictly as an Input tape and is modified only
by the user. When a computation is invoked the results are
displayed in the second tape which is used strictly as an
uneditable Output tape. Figure 9 shows part of the Input
and Output tapes and some of their controls.

There are several different methods of performing a
computation on a TM. The user can choose ‘Execute’
which will perform operations continuously until a halt
state is reached or 500 operations are performed,

whichever occurs first. If 500 operations are performed
without reaching a halt state the user is prompted to
continue or stop the computation.

The user can ‘Run’ a computation which will perform
one operation every 0.5 seconds updating the Output tape
as it proceeds. When toggled, the ‘Follow Head’ checkbox
locks the user’s view on the Output tape head to avoid
losing site of it. A ‘Trace’ can also be initiated which
allows the user to walk through a computation step by step.

3.2.2 Local and global variables
Variables are a kind of “syntactic sugar” that greatly
simplify the presentation of machines. For instance, if the
alphabet consists of a, b, and c then the machine shown in
Figure 10 is a simplification of the machine shown in
Figure 11.

Figure 10 Figure 11 Figure 12

As a TM is constructed its variables may be locally or
globally scoped. Global variables are used as a means of
passing information to and from sub-machines. For
instance, if alpha was declared global in the machine of
Figure 10 then the machine shown in Figure 12, using the
machine of Figure 10 as a submachine, obtains the
contents of alpha from within the submachine. If alpha
was declared local in the machine of Figure 10 this
information would not pass through to the alpha in the
machine of Figure 12. So the ability to scope variables
extends the expressive power of the high level notation
discussed earlier.

4. JCT design
JCT is designed with a pluggable framework. Each
environment resides in its own tab as illustrated in Figure
13. By creating new environments and placing each in its
own new tabbed layer, JCT can be expanded to contain any

number of self-contained environments. Not only does this
aleviate the burden on the future developer, it also allows
each environment to be used simultaneously without
cluttering up the users’ desktop with different frames.

Both the finite automata and Turing machine environ-
ments have distinct application (GUI) and library layers.
The construction of the application layer is discussed
further in [14]. An overview of the construction of the
library layer that provides most of the operational algo-
rithms for both environments can be found in [8] and [9].

108

5. Conclusions and future work
JCT contains environments for the construction and
simulation of finite automata and Turing machines that
can be used as a supplement to any theory of computation
course. Its ease of use provides students with a powerful
visual aid to learning and may equip students with a less
frustrating and time consuming way to experiment with
these models.

JCT has received positive feedback from faculty at
SUNY Institute of Technology where it will be integrated
into this year’s foundations of computation course. A
performance study of students using JCT will be held there
as well.

A PDA environment is currently under development for
future addition to JCT.

JCT is available at http://turing.sunyit.edu/JCT

6. References
[l] Astrachan, 0. and Rodger, S.H. Animation,

Visualization, and Interaction in CS 1 Assignments.
In Twenty-ninth SIGSCE Technical Symposium on
Computer Science Education, pages 3 17-321, 1998.

[2] Barwise, J and Etchemedy, J. Turing’s World,
Stanford: CSLI Publications, New York: Cambridge
University Press. 1993.

[3] Bilska, A., Leider, K., Procopiuc, M., Procopiuc,
Rodger, S., Salemme, J., Tsang, E. A Collection of
Tools for Making Automata Theory and Formal
Languages Come Alive. In Twentyeighth SIGSCE
Technical Symposium on Computer Science
Education, pages 15-19, March, 1997.

[4] Boroni, C.M., Goosey, F. W., Grinder, M.T., Ross,
R.J. A Paradigm Shift! The Internet, the Web,
Browsers, Java, and the Future of Computer Science
Education. In Twenty-ninth SIGSCE Technical
Symposium on Computer Science Education, pages
145-152, 1998. .

[5] Boroni, C.M., Goosey, F. W., Grinder, M.T., Ross,
R.J., Wissenbach, P. WebLab! A Universal and
Interactive Teaching, Learning, and Laboratory
Environment for the World Wide Web. In Twenty-
eighth SIGSCE Technical Symposium on Computer
Science Education, pages 199-203, March, 1997.

[6] Boroni, C.M., Eneboe J.T., Goosey F.W., Ross, J.A.,
Ross, R.J. Dancing with DynaLab: endearing the
science of computing to students. In Twenty-seventh
SIGSCE Technical Symposium on Computer Science
Education, pages 135-139, 1996.

[7] Cole, D., Wainwright, R., and Schoenefeld, D. Using
Java to Develop Web Based Tutorials. In Twenty-
ninth SIGSCE Technical Symposium on Computer
Science Education, pages 92-96, 1998.

[S] Hamshar, J.A. Capabilities of the Java Automata
Toolkit. Technical documentation, 1997. Available at
http://turing.sunyit.edu/JCT/JATFA.htm (last
referenced S/24/ 1998)

[9] Hamshar, J.A. Turing Machine Capabilities defined
within the Java Automata Toolkit, Technical
documentation, 1998. Available at http://turing.sunyit.
edu/JCT/JATTM.htm (last referenced S/24/1998)

[lo] Hennie, F.C. Introduction to Computability, Reading,
Mass. : Addison-Wesley, 1977.

[I l] Lewis, H., and Papadimitriou, C. Elements of the
Theory of Computation, Second Edition, Prentice-Hall
Inc., Upper Saddle River, New Jersey, 1998.

[121 Pierson, W.C. and Rodger, S.H. Web-based
Animation of Data Structures Using JAWAA. In
Twenty-ninth SIGSCE Technical Symposium on
Computer Science Education, pages 267-271, 1998.

[13]Procopiuc, M. Procopiuc, O., and Rodger, S.H.
Visualization and Interaction in the Computer Science
Formal Languages Course with JFLAP. In 1996
Frontiers in Education Conference, Salt Lake City,
Utah, pages 121-125, 1996.

[14]Robinson, M.B. A Java-based Tool for Models of
Computation, Master’s Thesis, SUNY Institute of
Technology, July 1998.

[lS]Rodger, S.H. Integrating Animations Into Courses. In
ACM SIGCSE/SIGCUE Conference on Integrating
Technology in Computer Science Education
(Barcelona)(1996), pages 72-74.

[16] Rodger, S.H. Integrating Hands-on Work into the
Formal Languages Course via Tools and
Programming. Lecture Notes in Computer Science
1260, Springer-Verlag,. pages 132-148, 1996.

[171 Savoiu, N. Deus Ex Machina. Software accompanying
Taylor, R.G. Models of Computation and Formal
Languages, Oxford University Press: New York, 1997.

[181 Turner, A.J. Technology in Computing Education:
Yet Another Bandwagon?. In ACM SIGCSE/SIGCUE
Conference on Integrating Technology in Computer
Science Education, Working Group Reports and
Supplemental Proceedings, pages 121-124, 1997.

109

