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ABSTRACT
Aircraft inspection is a vital element in assuring safety and
reliability of the air transportation system. The human in-
spector performing visual inspection of an aircraft is the
backbone of this process and training is an effective strategy
for improving their inspection performance. Previous stud-
ies have shown offline feedback training to be effective in
improving subsequent visual inspection performance. Be-
cause experienced inspectors are known to adopt a better
inspection strategy than novices, providing visualization of
experts’ cognitive processes a priori can accelerate novices’
adoption of the experts’ strategy. Using eye tracking equip-
ment, we record the point of regard of an expert inspector
performing an inspection task in a virtual reality simula-
tor. Analysis of their eye movements leads to a visualiza-
tion of their scanpaths and allows us to display the inspec-
tor’s visual search (hence cognitive) strategy. We show how
providing this type of scanpath-based feedforward training
of novices leads to improved accuracy performance in the
simulator coupled with an observed speed-accuracy trade-
off. We contend that the tradeoff results from trained novices
adopting a slower paced strategy through increased fixation
durations, suggesting trained novices learn a more deliberate
target search/discrimination strategy that requires more time
to execute.

ACM Classification:
H5.1; H1.2. Information interfaces and presentation (e.g.,
HCI): Multimedia information systems; Models and princi-
ples: User/machine systems (human factors).

Keywords:
Virtual Reality; Visual Search; Eye Tracking

INTRODUCTION
Visual inspection has been used extensively for the detec-
tion and classification of defects in a variety of industrial
processes such as printed circuit board inspection. In the air
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transportation industry, safety is of utmost importance. In-
spection and maintenance are vital in assuring safety of an
aircraft. The two main types of aircraft inspection are visual
inspection and non-destructive inspection. Approximately
ninety percent of all aviation maintenance inspection is vi-
sual [5].

In an aircraft inspection process, the human inspector per-
forming visual inspection plays a critical role. Training has
been found to be a very effective means of improving an in-
spector’s performance [11]. There are various forms of train-
ing systems that are used in industrial inspection, including
instructional training, on-the-job training, and offline train-
ing methods using multimedia-based technologies. Previous
studies have identified offline training within a virtual envi-
ronment to be effective in improving aircraft inspection per-
formance [15, 31, 21]. One element of a training program
is the provision of feedforward information. Feedforward
training provides prior information, such as information on
the defects present, specific locations of defects, and special
strategies.

Visual search e.g., for nonconformities of an item, is a key
aspect of a visual inspection task. Visual search is viewed
as either being driven bottom-up by features in the visual
field or by top-down cognitive processes involving intent
or expectation. The bottom-up model of visual search de-
scribes the process in terms of basic visual features that tend
to attract visual attention such as color, size, orientation,
and/or direction of motion [4, 33]. Edges, corners, or blink-
ing/flashing lights are common examples of such attractors.
The bottom-up model effectively describes low-level, invol-
untary attention and eye movements and forms a powerful
basis for computational models. Several such models have
been developed successfully in recent years [14, 22].

A bottom-up model of visual search, however, does not ade-
quately describe higher-level cognitive functions involved in
human vision that drive voluntary eye movements. Classic
eye tracking research has demonstrated that eye movement
sequences, or scanpaths, differ with the observer’s strategy
(expectations or goals) when viewing a scene [34]. Since
this early work, sequential eye movements have led to the
sequential model of visual attention (and visual search) de-
scribed as a three-stage process: first, information is pro-
cessed during a fixation; second, attention is shifted covertly
(without an eye movement) to a parafoveal/peripheral scene
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region (an area outside of the current fixation); third, an
eye movement is programmed and executed to the newly
selected location [13]. During visual search, where the
eyes (and detailed foveal vision) are moved depends on the
saliency of parafoveal/peripheral information [24]. Further-
more, scanpath characteristics, such as their order of pro-
gression, are task-dependent. Attributes such as fixation du-
rations and length of saccades (the fast, brief eye movements
from one fixation to the next) vary considerably as a func-
tion of the particular search task. It is generally agreed that
fixation durations reflect the acquisition and processing of
information in the visual scene. Visual search studies show
that fixation durations increase with: (i) the difficulty of dis-
criminating the target from surrounding distractors, (ii) the
expectation of a target among distractors, (iii) the viewer’s
use of information conveyed by distractors about the relative
location of a target, and (iv) hindrance to the opportunity to
preview an object before it is fixated [1, 12].

In practical models of visual inspection, visual search strat-
egy has been categorized as either random or purely system-
atic [19]. A random strategy is a memoryless process where
fixations can occur anywhere in the search field. A purely
systematic strategy is one where perfect memory guarantees
that no two fixations will occur at the same location. Gen-
erally, human search strategy falls in between these two ex-
tremes. Inspection performance increases when the search
strategy tends toward a systematic approach as the inspec-
tion coverage is then exhaustive with no overlap between
successive fixations. It has been observed that eye move-
ments of experienced inspectors are far from random. In ra-
diology, an expert radiologist’s scanpath is neither random
nor resembling that of a novice; experienced radiologists
use a more systematic strategy while inspecting chest ra-
diographs than untrained viewers [16]. In chip inspection,
trained inspectors adopt a better inspection strategy than
novice inspectors [27]. It has also been shown that search
strategy can be taught and search behavior improves with
training [32, 3].

The improvement in inspection performance of novice in-
spectors over time may be accelerated if novices are trained
to adopt an expert inspector’s inspection strategy. Using eye
tracking equipment, the point of regard data of an expert in-
spector can be recorded while performing an inspection task.
The analysis of this data allows the characterization of the
expert inspector’s visual search strategy. The expert’s search
strategy can then be shown to novices as feedforward train-
ing to accelerate their adoption of a more effective search
strategy.

Scanpaths have successfully been used for feedback train-
ing (“you looked here”) of resident radiologists as well as
for guidance of automated image processing algorithms [17,
20]. Graphical cognitive feedback of search strategy has also
been shown to enhance visual inspection performance [6].
Real-time gaze over shared workspaces has also benefited
resolution of ambiguous deictic references [29, 30, 9]. How-
ever, to our knowledge, feedforward display of search strat-

egy (“you should look here”) via static depiction of recorded
scanpaths has not been investigated for its training potential.

This study deals with the development of a training medium
to provide the search strategy of an expert inspector to
novice inspectors. The effect of this a priori training on
novice inspectors’ visual search process and performance is
experimentally evaluated. An initial study was performed to
examine display techniques that may be used to effectively
present feedforward information [26]. The present study
deals with the evaluation of the previously developed display
technique and also with the evaluation of the effectiveness of
search strategy training.

RESEARCH HYPOTHESIS
This study explores the effect of providing feedforward
search strategy training to novices, based on an expert in-
spector’s recorded visual search scanpath. Performance
(speed, accuracy) and process (eye movement) measures of
participants on a visual inspection task are analyzed for im-
provement in inspection accuracy and efficiency as a result
of feedforward training.

The research hypothesis predicts that participants receiving
feedforward search strategy training will show greater im-
provement in visual search performance than the participants
not receiving training. That is, we expect a positive effect on
performance imparted by feedforward training.

The research hypothesis concerning eye movement pro-
cess measures predicts increased fixation durations follow-
ing feedforward training. This expectation stems from re-
search showing that, in a visual search task, prior knowledge
of the stimulus leads to longer fixation durations provided
parafoveal preview is insufficient (e.g., search in an area with
sparsely distributed distractors) [Greene, personal communi-
cation]. In knowledge-driven (top-down) visual search, fixa-
tion durations are thought to be modulated by the availability
of parafoveal/peripheral preview (the so-called pre-attentive
or preview benefit [23, 13]). In contrast, fixation durations
in image-driven (bottom-up) visual search are thought to be
preset based on the viewer’s prior experience with the search
task, and hence, for the most part, invariant. Because the
visual inspection task in our case is performed in a room-
like virtual reality environment with an effectively large field
of view and sparsely distributed targets, the context of our
search area offers little preview benefit. We thus expect
longer fixation durations following training, if, after train-
ing, viewers adopt a knowledge-driven search strategy.

METHODOLOGY

Subjects
A sample population of 16 college students participated in
the study. The age of the participants (10 male and 6 female)
ranged from 19 to 33 years. Participants were screened for
visual acuity (20/20 natural or corrected with contact lenses),
color vision, and our ability to calibrate an eye tracker with
the participants’ eye movements. It has been demonstrated
that student subjects can be used in lieu of industrial inspec-
tors [10].



Figure 1. Head Mounted Display (HMD).

Figure 2. Cargo bay of L1011 aircraft.

Due to loss of eye tracking data of 3 subjects when the sim-
ulator failed to record the point of regard of the participant
(e.g., due to calibration error or the eye tracker’s dropping
of the data), process (eye movement) measures were avail-
able only for 6 subjects in the treatment group and for 7
in the control group. For analysis purposes, process data
for one randomly selected subject in the control group was
dropped and analysis was performed with a sample size of 6
subjects per group. Performance (speed and accuracy) data
were recorded independently of eye movements for all 16
subjects. For analysis purposes, performance measures in-
clude data from all 16 subjects, 8 subjects per group.

Stimulus Materials and Equipment
A virtual reality aircraft inspection simulator developed pre-
viously was used to carry out the experiment [8, 7].

The principal hardware component is a Head Mounted Dis-
play (HMD) integrated with a binocular eye tracker (Fig-
ure 1), jointly built by Virtual Research and ISCAN. An
Ascension Technology Corporation’s Flock of Birds (FOB)
tracking system is used for rendering the virtual environment
with respect to the participant’s position and orientation. For

Figure 3. Familiarization scenario with highlighted de-
fects. (Image artificially enhanced for greyscale reproduc-
tion.)

the purpose of selection and pointing in the virtual environ-
ment, a hand held mouse with 6 degrees of freedom (6DOF)
is used. The simulator executes on a 1.5GHz dual Pentium 4
processor Dell personal computer with an NVidia GeForce4
FX5950U graphics card, running the Red Hat Linux 8 oper-
ating system.

The software component of this simulator consists of two
programs, Inspector and Vspec. The Inspector pro-
gram displays the virtual reality scenario to the participants
and at the same time records the participants’ eye move-
ments, while Vspec is used to analyze the data collected
by Inspector.

The task scenarios used in this study were variations of a
virtual reality model of an aircraft cargo bay texture mapped
with images taken of a real cargo bay of a Lockheed L1011
aircraft (Figure 2). Target defects were representations of de-
fects typically found in the aircraft cargo bay, namely crack,
corrosion, broken electrical conduit, abrasion, and hole.

Five variants of the cargo bay scenario were used for this
study. The first was a familiarization scenario (Scenario A)
with the different types of defects highlighted (Figure 3).
The purpose of this scenario was to familiarize participants
with virtual reality and to allow them to become accustomed
to the cargo bay environment. This scenario also presents
highlighted examples of the five different defect types.

Participants performed the inspection task using two addi-
tional multiple defect inspection scenarios (Scenarios B and
C). These scenarios (Figure 4) were constructed to be equiv-
alent in task difficulty (identical distribution of defect types
and similar locations) and contain twenty-two defects of the
five defect types listed above.

The fourth scenario (Scenario D) was the feedforward train-
ing scenario (Figure 5). This scenario displays the search
strategy information collected from an expert inspector. The
fifth scenario (Scenario E), the practice scenario, was iden-
tical to Scenario D, except that there was no display of the
search strategy information of the expert inspector.



Figure 4. Inspection task scenario with 22 defect loca-
tions (not shown during testing). (Image artificially en-
hanced for greyscale reproduction.)

Figure 5. Feedforward training scenario showing ex-
pert’s search strategy.

Feedforward Training Scenario Development
The feedforward training scenario displays an expert inspec-
tor’s search strategy. An expert inspector’s eye tracking data
(Figure 6) was recorded while performing the inspection
task in the multiple defect inspection scenario. The expert
inspector had extensive prior experience with the simulator,
training in the theoretical concepts of search strategy and a
high level of performance on the task.

The expert inspector’s raw eye tracking data was then ana-
lyzed and processed. The data was classified into three cate-
gories:

Figure 6. Eye tracking data of expert inspector.

Figure 7. Final display for feedforward training.

1. Area of interest: Where the inspector was looking. This
was achieved by grouping neighboring fixation points to
determine an area of fixation.

2. Sequence of fixations: The path of the inspector’s eye
movement from one area of interest to the next. These
were determined by the isolation of saccades, identified
by the analysis of the inspector’s raw eye movement data.

3. Time spent at each area of interest: How long the inspec-
tor spent looking at each area of interest. This data was
quantized into four relative durations of time. The time
spent at each area of interest ranged from 151 millisec-
onds to 777 milliseconds (see below).

The final feedforward display (Figure 7) was developed by
combining the preferred characteristics of two display tech-
niques evaluated in an earlier study [26]. Area of interest
was represented by yellow circles. The sequence of the eye
movements on each wall was represented by arrows from
one area of interest to the next using a color gradient rang-
ing from violet (start) to red (end) through the colors of the
rainbow. The relative time spent at each area of interest was
represented by yellow vertical bars filled with green placed
next to the area of interest. The level to which the bars were
filled denotes the amount of time spent at that area of inter-
est. The levels were as follows: 1/4 filled denotes the lowest
level (151ms to 307ms); 1/2 filled denotes the second level
(308ms to 464ms); 3/4 filled denotes the third level (465ms
to 620ms); when completely filled, the bar denotes the high-
est level of time (621ms to 777ms). To reduce clutter, the
bar denoting the lowest level was considered the default and
not displayed. Thus, no time bar next to a particular area
of interest meant that the expert spent time classified at the
lowest level at that area of interest. Defects in the scenario
were highlighted with a red rectangular outline around them.

Experimental Design
A Pretest-Posttest Control Group design was used for this
experiment [2] with one independent variable, the treatment
condition, at two levels: training (treatment group) and no
training (control group). Study participants were randomly
assigned to each group (Table 1).



Stage Familiarization Pre-test Treatment Post-test
Treatment Group

(randomly assigned)
Familiarization Inspection

Task (O1)
Feedforward Training

+
Practice

Inspection
Task (O2)

Control Group
(randomly assigned)

Familiarization Inspection
Task (O3)

Practice Inspection
Task (O4)

Table 1. Experimental design.

Only the treatment group received feedforward training. The
feedforward training scenario consists of the search strategy
information presented in the cargo bay scenario. This po-
tentially also provides a participant in the treatment group
more exposure to the cargo bay environment than a partic-
ipant in the control group. To isolate the effect of feedfor-
ward training, the effect of exposure was blocked. This was
achieved by exposing the participants in the control group to
a scenario identical to the training scenario with the defects
highlighted, but without the feedforward information.

Procedure
Participants were first asked to complete a consent form and
a demographic questionnaire, and given instructions to en-
sure their understanding of the experiment. All the partici-
pants were then immersed in the familiarization scenario to
familiarize them with virtual reality, the cargo bay environ-
ment, and the different types of defects.

They were then asked to perform an inspection task in a mul-
tiple defect environment. The task was an unpaced task: the
participants were instructed to terminate the task when they
wished. One of two multiple defect inspection scenarios was
presented for this task. The two multiple defect inspection
scenarios were counter balanced to assure that both groups
received the same number of orderings of the two scenarios.
The task involved the participants searching for defects in
the virtual inspection scenario. Once they found a defect,
they marked it in the scenario by pointing and clicking using
the 6DOF mouse. If the selection was correct, the defect was
then highlighted in red.

The eye movements of the participants and the selections
they made by clicking the 6DOF mouse were recorded. The
participants in the control group were then immersed in the
exposure scenario. They were allowed to spend as much
time as they wished in this scenario.

The participants in the treatment group were immersed in the
feedforward training scenario. The feedforward display was
briefly explained to them and they were allowed to spend as
much time as they wished in this scenario.

All the participants were then asked to perform a second in-
spection task in a multiple defect environment. The task was
again unpaced and the participants could terminate the task
when they wished. The participants were immersed in the
multiple defect inspection scenario that they had not been
exposed to in the first inspection task. The eye movements
of the participants and the selections they made by clicking

the 6DOF mouse were recorded. The participants were not
given feedback on their performance for this task.

A subjective questionnaire was administered to the partici-
pants after this stage.

Measures
Performance measures and process measures were collected
for each inspection task. Performance measures obtained
relating to speed and accuracy consisted of:

1. Number of defects detected (hits).
2. Total time taken from presentation until the participant

considered the search task complete.

Process measures expressed by eye movements consisted of:

1. Total number of fixations.
2. Total number of fixation groups.
3. Mean fixation duration.

Subjective measures garnered from a questionnaire were
used to evaluate participants’ perceptions of training effec-
tiveness.

RESULTS
Collected performance, process, and subjective measures
were analyzed using SAS (v8.2) and Microsoft Excel 2002.
Results measured the effect of training provided to novice
inspectors in terms of performance and the visual search pro-
cess. Performance measures report accuracy (the number of
defects detected) and efficiency (speed; time taken for the
task in seconds). Process measures were obtained by analyz-
ing the raw point of regard data of the participants, recorded
by the eye tracking equipment [7].

Process measures are reported in terms of the number of fix-
ation points, the number of fixation groups (fixation point
clusters) and the mean fixation duration in milliseconds. Fix-
ation points are identified by isolating fixations from sac-
cades using a velocity filter with a threshold value set at
130 degrees of visual angle/second. Fixation grouping is
performed by condensing a string of consecutive fixation
points to a single fixation by finding the centroid of the group
and verifying that each fixation group’s duration is greater
than or equal to the minimum theoretical fixation duration
of 150ms.

Subjective measures were collected on nine questions using
a five point Likert scale where 1 was strongly disagree, 3
was neutral and 5 was strongly agree.



Measures Relative difference (%) t p
Control Treatment

Mean (SD) Mean (SD)
No. of defects detected 13.77 (17.59) 42.27 (37.15) 1.96 0.035
Time taken for the task -18.36 (31.65) 73.03 (45.74) 4.64 0.0001
No. of fixation points 3.05 (41.74) 54.67 (72.01) 1.51 0.079
No. of fixation groups -3.69 (36.61) 53.38 (75.84) 1.65 0.064
Mean fixation duration -23.63 (27.45) 35.41 (66.99) 1.99 0.037

Table 2. Performance and process measures.

For the control group, the difference between the post-test
and the pre-test represents the effect of practice while, for
the treatment group, the difference represents the effect of
the training coupled with the effect of practice. The effect of
training can be isolated by comparing the post-test - pre-test
difference for the treatment group with the difference for the
control group. The inherent ability of the participants to per-
form the search task varies. Hence the absolute difference
between the post-test and pre-test measures is not compara-
ble across individuals. This variability is accounted for by
transforming the absolute difference to a relative difference.
The relative difference was calculated by representing the
difference (post-test - pre-test) as a percentage of the pre-
test score for each participant, thus focusing on the improve-
ment of the participant’s abilities relative to his or her initial
ability.

An independent-means t-test was used to analyze the per-
formance and process data. For subjective data, we use a
non-parametric Wilcoxon signed rank test.

Performance Measures
Table 2 presents the objective performance and process mea-
sures. The t-test of the relative difference in accuracy shows
that the improvement for participants who received training
was significantly higher than that of the participants in the
control group (p < 0.05). Figure 8(a) presents this result
graphically.

The t-test of the relative difference in time taken to complete
the inspection task was significant (p < 0.001). The time
taken to complete the inspection task by participants who
received training increased, while the time taken by partic-
ipants in the control group decreased. This result is shown
graphically in Figure 8(b).

Process Measures
The effect of training on the relative difference in the number
of fixation points was not significant (p = 0.079). This result
is shown graphically in Figure 8(c). The effect of training
on the relative difference in the number of fixation groups
was also not significant (p = 0.064). This result is shown in
Figure 8(d).

The t-test of the relative difference in the mean fixation dura-
tion was significant (p < 0.05). The mean fixation duration
for participants who received training increased, while the

(a) No. of hits. (b) Time taken for task.

(c) No. of fixation points. (d) No. of fixation groups.

(e) Mean fixation duration.

Figure 8. Performance and process measures: relative
difference (%).

mean fixation time for participants in the control group de-
creased. This is graphically represented in Figure 8(e).

Subjective Measures
The results of the analysis of subjective measures are sum-
marized in Table 3. Subjective measures were collected
only from the treatment group and were analyzed using
a Wilcoxon signed rank test with an anchor point of 3.
For questions 1,2,3,4,7,8, and 9, the Wilcoxon test showed
that the responses were significantly greater than the anchor
point of 3. The results for questions 5 and 6 were not signif-
icant.

DISCUSSION
The objective of this study was to determine whether search
strategy can be taught using a feedforward training display
that represents the eye tracking information gathered from
an expert inspector performing an inspection task. Training



Question Mean rating
(SD)

Wilcoxon test
p

1 The information presented in the training display was understandable. 4.375 (0.517) 0.0078
2 The training display provided a helpful representation of the different types of

defects.
4.125 (0.641) 0.0156

3 The training display provided a helpful representation of the areas of interest. 3.875 (0.641) 0.0313
4 The training display provided a helpful representation of the sequence of an

expert inspector’s eye movements.
4.5 (0.756) 0.0156

5 The training display provided a helpful representation of the relative time an
expert inspector spent at each area of interest.

3.875 (0.991) 0.0938 (ns)

6 The colors used on the training display were helpful. 3.875 (1.356) 0.1719 (ns)
7 Overall, the training provided useful information on search strategy. 4.25 (0.463) 0.0078
8 The training session helped me to adopt the expert’s search strategy. 4.625 (0.517) 0.0078
9 The training session helped me to perform the search task more efficiently. 4.5 (0.756) 0.0156

Table 3. Analysis of subjective measures (5-point Likert scale where 1 = strongly disagree, 3 = neutral and 5 = strongly
agree) with significance measured with respect to an anchor point of 3.

effectiveness was evaluated by comparing the performance
of a group of participants exposed to the training against the
performance of a group of participants who did not receive
the training. Process measures were analyzed to understand
how the training affected the participants’ search strategy.

Performance Measures
The results show that feedforward search strategy training
was effective in improving the accuracy of novice inspectors
in detecting defects. At the same time, improved accuracy
was accompanied by a significant increase in the time taken
to complete the search task. Thus, a speed-accuracy tradeoff
was observed.

Process Measures
Process measures show that participants who received feed-
forward training appear to have executed a larger number of
fixations after training, although the result is marginally sig-
nificant for both comparisons of fixation points and the clus-
tered fixation groups (p > 0.05 in both cases). Participants
who received feedforward training significantly increased
their mean fixation duration following training. A slower
paced inspection strategy adopted by the participants in the
treatment group would explain the increase in time taken for
the task. It was observed that the participants who received
the search strategy training appeared to adopt a search pro-
cess that was similar to the search strategy of the expert in-
spector. It was also observed that the search strategy of the
participants in the treatment group tended towards a more
systematic (memoryless in the statistical sense) search strat-
egy after training, relative to the search strategy they adopted
before training (more random and repetitive in nature). Re-
call, a perfectly systematic search strategy is a sequential
inspection process that covers the inspection area without
overlap.

Eye Movements, Speed, and Accuracy
Collecting eye tracking data during an inspection task in a
virtual reality simulator provided us with useful additional
information beyond performance measures that gave us in-
sight into participants’ cognitive processes during inspec-
tion.

The training scenarios that we have developed are based on
an explicit representation of an expert’s cognitive processes
and thus lead to knowledge-driven (top-down cognitive) vi-
sual search vs. image-driven (bottom-up) search performed
by the control group. Along with bottom-line performance
data showing better accuracy of trained novices, the ob-
served increase in fixation durations is significant, since it
is evidence of trained novices devoting more cognitive pro-
cessing to the target discrimination task. This is, in our view,
a poignant interpretation of the speed-accuracy tradeoff in
light of previous psychological findings (e.g., [12]): trained
novices were thoughtfully looking for defects in the simula-
tor vs. naively “hunting and pecking” for them. We contend
that this is the reason for increased time in the simulator and
an indicator of training effect: novices learned a more delib-
erate target search/discrimination strategy that required more
time to execute; they did not merely spend more time in the
simulator. Spending more time should not have led to higher
accuracy unless subjects in the treatment group adopted a
more systematic search strategy.

Subjective Measures
The information gathered from the subjective questionnaire
helped evaluate the usefulness of scanpath-based training
from the participants’ perspectives. It also allowed us to
evaluate the effectiveness of the representation of various
types of categorical information.

The analysis of the subjective data (Table 3) suggests that
the participants found the feedforward information on search
strategy understandable. Perceived understandability of
feedforward information, coupled with the improvement in
performance, suggests that offline training provided in the
form of a static representation of the expert’s search strat-
egy is effective. Our results therefore support the use of
offline training, which can be conducted in controlled cir-
cumstances as an adjunct to on-the-job training, currently
the primary training methodology available for aircraft in-
spectors.

Questions 2 through 5 were used to evaluate the represen-
tation of different categories of information. The analysis



indicates that participants found the representation of the de-
fects, the areas of interest, and the sequence of the expert’s
eye movements helpful, but not the representation of relative
time spent at each area of interest. Participants also did not
find the colors used in the display very helpful and, there-
fore, the color gradient used to represent the timeline associ-
ated with the scanpath (hence substantiating Tufte’s derision
of rainbow encoding [28]).

Participants felt that the training provided useful informa-
tion on search strategy. They also felt that the training
allowed them to adopt the expert inspector’s search strat-
egy and helped them perform the inspection task more ef-
ficiently. Most of the participants who received the training
commented that they found the training very useful for the
task.

Participants’ impressions of improved search efficiency, fol-
lowing feedforward training, at first appears to contradict the
resulting increase in the time taken to complete the inspec-
tion task. This could be a result of participants’ appreciation
of the expert’s search strategy as more systematic in nature,
ensuring that search time is not wasted in repeatedly inspect-
ing previously covered areas, which would be the case in a
more random search strategy.

CONCLUSION
From the results of this study, it can be concluded that sub-
jects can be trained to adopt a search strategy tending toward
a more systematic approach and away from a purely random
effort. Feedforward search strategy training is effective in
improving inspection performance. With an increase in per-
formance, an increase in time taken to complete the task was
observed. Thus, a speed-accuracy tradeoff was found in the
application of this training. It has also been shown that eye
tracking information can help elicit the cognitive processes
of an expert inspector while performing a search task. The
sequential nature of scanpaths reveals locations where the
expert devoted greater processing time during visual search,
and, perhaps more importantly in this case, the expert’s cho-
sen sequential progression during search. The display tech-
nique developed for search strategy training was found to be
effective in representing this information.

Future applications of scanpath-based feedforward training
are potentially numerous, generally related to comparison of
expert/novice performance. Eye movements of experts have
been compared to those of novices during various inspec-
tion tasks ranging from poultry, meat, and fish inspection, to
drug inspection, to medical X-ray inspection, to production
line inspection, to photo interpretation, to name a few [27,
16]. These studies were conducted largely in an effort to un-
derstand experts’ cognitive processes. As our work shows,
scanpaths have the potential for feedforward training in these
and many other visual inspection applications.

Scanpath-based training may also be applicable to a broader
range of human activities involving skilled performance. Ex-
amples of past skilled performance studies, aimed at enhanc-
ing our understanding of human expertise, include chess

play and laparoscopic surgery [25, 18]. When deciding if the
king is checked, eye tracking has shown that chess masters
made fewer fixations and had a greater proportion of fixa-
tions between individual pieces, rather than on pieces. In
a laparoscopic surgery simulator, comparison of eye move-
ment strategies between expert and novice surgeons showed
that experts tended to fixate the target while manipulating
the laparoscope, while novices tended to vary more in their
behavior (e.g., tracking laparoscope movement). Other dy-
namic situations where eye movements have been examined
for insight into experts’ cognitive strategies include driving,
basketball foul shooting, golf putting, table tennis, baseball,
gymnastics, walking in uneven terrain, mental rotation, and
interaction with computers [24].

For future training purposes, our work demonstrates the po-
tential for skilled performance training via feedforward (a
priori) display of an expert’s cognitive strategy through vi-
sualization of their recorded scanpaths. Simple playback of
recorded expert scanpaths may lead to quicker skill acquisi-
tion in skilled tasks.
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