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ABSTRACT

Visual inspection permeates the lives of all humans. Important criteria for evaluating the efficiency of human

visual inspection include measurements of performance, as indicated by the inspector’s speed and accuracy.

These performance metrics effectively summarize general outcomes of the process of (visual) inspection. In

contrast, eye movements captured during visual inspection provide visualization of the inspector’s process,

and therefore provide an instance of process metrics. Important eye movement related process measures

include fixation durations, locations, and orderings. The utility of process metrics relies on their relation to,

or explanation of performance. Previous eye tracking studies have relied solely on performance metrics to

evaluate the differences in inspection strategies between experts and novices. We developed iComp, a visual

tool that implements the unique feature of direct quantitative scanpath comparison (in loci and sequence), to

provide a means for computation of an effective process measure for future expert/novice studies.
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CHAPTER 1

INTRODUCTION

Eye tracking has shown itself to be a valuable method of providing data describing the visual attention

and cognitive state of a subject. Eye movements bring the fovea, the area centered on the gaze point that is

seen in high detail, to Regions of Interest (ROIs) within a scene to be further examined. These inspections

are fixations interspersed by rapid eye movements, called saccades. A sequence of fixations is defined as a

scanpath. It can be assumed that visual attention follows the fovea. Although this is not always the case (one

can attend to an object in their periphery), nonfoveal visual attention is immeasurable and unlikely (without

overt effort) in most unrehearsed tasks. Consequently scanpath data can be examined to determine what a

subject attends to and consequently where the ROIs are located within a scene.

Figure 1.1: Expert (above) and novice (below) scanpaths, captured at Clemson’s Eye Tracking Laboratory.
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Consider two scanpaths captured during inspection of the eye tracking laboratory at Clemson, shown in

Figure 1.1. The top image shows the scanpath of an expert searching a typical room for potential threats.

The bottom image shows the scanpath of a novice performing the same task. It is desirable to derive a

single objective metric indicating the similarity of the two scanpaths. In this instance, the metric should

indicate similarity in one of three viewed ROIs, namely Region 2 (“tables”). Furthermore, a low sequential

correlation is expected since in this instance the expert’s scanpath sequence processed the ROIs in sequence

{1, 3, 2}, while the novice appears to have processed the ROIs in sequence {2, 3}, although Region 3 was not

properly scanned. Note that the data shown in Figure 1.1 is authentic in terms of captured eye movements

(on equipment available at Clemson University), however, the inspection task was hypothetical.

This thesis proposes to provide a visual training and assessment methodology based on experts’ eye

movements. Experts’ scanpaths will be used to impart to novices a suitable visual search strategy, based

on the explicit depiction of the strategy employed by the expert. Assessment of a trainee’s progress will be

evaluated off-line via comparison of both search strategies. The basis of the technical software development

is the calculation of a quantifiable metric (akin to correlation) indicating the degree of similarity of the visual

search strategy adopted by trainees to that of an expert. It is hypothesized that, through training, this metric

can provide objective evidence of training effect, particularly for tasks involving visual search.

Schoonard et al. [1973] stated that “visual inspection pervades the lives of all people today. From poultry,

meat, and fish inspection, to drug inspection, to medical X-ray inspection, to production line inspection, to

photo interpretation, the consequences of inspection directly affect people’s lives through their effects on the

quality and performance of goods and services.” Important criteria for evaluating the efficiency of human

visual inspection include measurements of performance, as indicated by the inspector’s speed and accuracy.

These performance metrics effectively summarize general outcomes of the process of (visual) inspection. In

contrast, eye movements captured during visual inspection provide visualization of the inspector’s process,

and therefore provide an instance of process metrics. Important eye movement related process measures

include fixation durations, number of fixations, inter-fixation distances, distribution of fixations, fixational

sequential indices (order of fixations) and direction of fixations [Megaw and Richardson 1979]. The utility of

process metrics relies on their relation to, or explanation of performance. Thus one expects to find a relation

between process and performance measures.

Besides being useful for gaging inspection performance, eye movements play a part in training visual

search strategy [Wang et al. 1997]. Visual search strategy training can be effective toward the adoption of a

desirable (e.g., systematic) search strategy. To train one in a visual search strategy, eye movements can be
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used as both a feedback mechanism and as confirmation of adoption of the new search strategy. Wang et al.

recorded eye movements over visual inspection of artificial printed circuit boards. Eye movements were used

to check how well each subject’s search pattern followed the strategy trained. Scanpaths were judged by the

experimenter after each training trial and feedback was given to the subject about whether they had followed

instructions to perform random or systematic search.

Sadasivan et al. [2005] have shown that eye movement scanpaths can also be used as a feedforward

mechanism for training. They compared the speed and accuracy between experts and novices in finding

possible aircraft defects. While these are certainly valid metrics, more specific and informative results could

have been obtained from direct scanpath comparison.

Another example of applicable research is presented by Law et al. [2004] concerning surgical training.

Again performance metrics where used (speed and accuracy) to evaluate the differences between experts

and novices operating a virtual laparoscope where process metrics (scanpath comparison) would have been

beneficial.

The room clearing task depicted above is also relevant. Direct scanpath comparison is the natural, com-

pletely objective way to measure the similarity between subjects in this case.

To calculate the scanpath comparison metric, the tool iComp was developed to directly compare the

scanpaths between multiple subjects suitable for expert/novice comparisons, e.g., in training tasks. The tool

was designed to be easy to use by eye tracking researchers and as fully automatic as possible. As stated

above, several previous eye tracking studies substantiate the inception of such a tool.



CHAPTER 2

BACKGROUND

The creation of a process metric based on eye movements relies on the development of an algorithm

capable of measuring differences between two (or more) scanpaths. The goal is to evaluate the correlation

between novice and expert inspectors’ eye movements. This measurement should be capable of comparing

fixated regions as well as the order of fixations.

Recent advances in the research of low-level visual processes have led to the emergence of sophisticated

computational models of visual search. These models mimic the low-level portion of the human visual sys-

tem, automatically detecting Regions of Interest (ROIs) as potential human gaze fixations (e.g., see Itti et al.

[1998]). Concomitant with these efforts, techniques have begun to appear which compare human fixations

to those generated algorithmically. These techniques are necessary in order to validate the similarity of an

artificially generated scanpath to that of a human subject.

Privitera and Stark [2000] recently developed a methodology for comparing their artificially generated

scanpaths to that of humans. The comparison algorithm relies on the clustering of gaze data into a limited

number of ROIs and a subsequent step of assembling the temporal sequences of ROIs into ordered strings

for sequence comparison based on string editing. Each clustered ROI is assigned a unique character label.

s1 = abc f e f f gdc
s2 = a f b f f dcd f start cost 0

s1 = abc f e f f gdc
s2 = a f e f f dcd f after substitution of first b by e cost 1

s1 = abc f e f f gdc
s2 = abc f e f f dcd f after insertion of bc after first a cost 2

s1 = abc f e f f gdc
s2 = abc f e f f dc after deletion of last d f cost 2

s1 = abc f e f f gdc
s2 = abc f e f f gdc after insertion of g cost 1

Figure 2.1: Example of string editing. From Privitera and Stark [2000].

Two different indices of similarity are computed between two strings: S p, the loci similarity index, and S s,

the sequence similarity index. The locational similarity, S p, between two strings is the number of characters

in both strings normalized by the number of unique characters in the second. Note that the second string
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is assumed to be a “ground truth” against which the first string is compared [Clauss et al. 2004] and thus

the resultant metric is not symmetrical. To compute the sequential similarity, S s, the Levenshtein distance

algorithm [Levenshtein 1966], or string edit algorithm, (an optimization algorithm) assigns unit costs to three

different character operations: deletion, insertion, and substitution. Characters are manipulated to transform

one string to another, and character manipulation costs are tabulated. The cost is normalized by the length

of the second string and complemented. Complementation is necessary because the normalized Levenshtein

distance between two strings is zero based (zero meaning they are equal; one meaning no similarity) while

instead a one based measure is desired in order to model percentage of similarity. To illustrate the calculation

of both indices, take for instance two strings s1 = abc f e f f gdc and s2 = a f b f f dcd f . Since all the characters

of s2 are present in s1, the two strings yield a loci similarity index of S p = (5/5) = 1. The Levenshtein

distance (combined cost of deletions, insertions, and substitutions) between s1 and s2 is 6 (as illustrated

in Figure 2.1). Given the length of s2 is 9, the sequence similarity index between the two strings is S s =

(1 − 6/9) = 0.33. The results obtained from this example can be interpreted as meaning that the two strings

have loci that are 100% within the foveal range and sequence that overlap by 33%.

Once calculated, similarity coefficients are stored in a table, named the Y-matrix, having one row and

column for each image that a subject viewed (for all subjects). Because a complete Y-matrix would be far

too large to be displayed, Parsing diagrams are utilized. Parsing diagrams contain averages of similarity

coefficients collected from the Y-matrices and are a condensed and effective alternate way to display the

data. Parsing diagrams consist of four main entries: Repetitive (R), the same viewer looking at the same

scene at different times; Local (L), different viewers looking at the same scene; Idiosyncratic (I), the same

viewer looking at different scenes; and Global (G), different viewers looking at different scenes. In addition,

a Random (Ra) entry was provided, against which significance of the results could be concluded.

The string-editing methodology has been employed in several studies where scanpath comparison was

required. Josephson and Holmes [2002] may have been the first to evaluate web page design with Brandt and

Stark’s [1997] technique. Their results were mixed at best. Some individuals displayed scanpaths that re-

sembled each other over time. However, they also found many instances in which the most similar sequences

were from different subjects rather than from the same subject. Their study was descriptive in nature with

no tests of significance. More recently, Josephson and Holmes [2006] again used string-editing to evaluate

on-screen television enhancements such as headline bars and bottom-of-the-screen crawlers. Their study re-

vealed that screen design impacted news story content recall. In both of their studies, the viewing stimulus

was partitioned into Region Of Interest a priori, thus precluding the need for automatic cluster analysis.
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With slightly differing objectives, Hembrooke et al. [2006] used string-editing to investigate the amalga-

mation of numerous scanpaths into a single, representative scanpath. Since string-editing essentially defines

a multiple sequence alignment algorithm, the final alignment is a pattern constructed from similarities among

multiple input patterns. Therefore, one can apply this approach to the construction of something resembling

the “ideal observer”, or “average expert” over a given visual stimulus.

Recently West et al. [2006] extended the string-editing scanpath comparison approach by augmenting

it with the Needleman-Wunsch algorithm commonly used in bioinformatics. Their resultant analysis tool,

eyePatterns, provides a measurement of sequence similarity that allows flexibility through variable scoring

parameters. eyePatterns is freely available at <http://www.juliamae.com/eyepatterns/>.

Privitera and Stark’s approach to the comparison of scanpaths is one of the first methods to appear to

quantitatively measure not only the loci of ROIs but also the order of ROIs. However, the technique suffers

from a critical limitation in that it relies on k-means clustering of fixation points into ROIs, requiring a

priori knowledge of the number of clusters, or regions in a scene. Santella and DeCarlo [2004] presented a

viable alternative in their mean shift clustering technique. In general, clustering starts with a set of n points:

{xi | i ∈ 1 . . . n}. The entire process is composed of two steps:

1. Shift the points into denser configurations until they can be easily separated.

2. Administer a distance threshold clustering algorithm.

The first stage—the mean shift—is crucial, as it ordains the robustness of the entire process. The process

continues by repeatedly moving a point xi to a new location s(xi), the weighted mean of nearby points based

on the kernel function K:

s(xi) =
∑

j K(xi − x j)x j∑
j K(xi − x j)

where K is typically a multivariate zero-mean Gaussian with covariance:

C =


E[xi, xi] E[xi, yi] E[xi, ti]

E[yi, xi] E[yi, yi] E[yi, ti]

E[ti, xi] E[ti, yi] E[ti, ti]

 =


σ2

x 0 0

0 σ2
y 0

0 0 σ2
t

 ,

assuming independence among xi, yi, and ti, with E[xi, yi] = 1
n−1
∑N

i=1 (xi − x̄)(yi − ȳ). The following zero-

http://www.juliamae.com/eyepatterns/
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mean spatiotemporal Gaussian kernel can be used:

K([xi, ti]) = exp
−  x2

i

σ2
x
+

y2
i

σ2
y

 − t2
i

σ2
t

 .
Generally, it is expected that σ2

x > σ
2
y , but for convenience the spatial distribution can be assumed to be

symmetric. In this case, denoting σs = σx = σy, the spatiotemporal Gaussian kernel simplifies to:

K([xi, ti]) = exp
− x2

i + y2
i

σ2
s
−

t2
i

σ2
t


where σs and σt determine local support of the Gaussian kernel in both spatial (dispersion) and temporal

extent. For still images, the temporal dimension can simply be excluded by effectively setting σt to infinity.

Santella and DeCarlo show that, unlike with k-means clustering, the mean shift approach eliminates the

need for a priori estimation of the number of ROIs in a given scene. The only existing user-adjustable

parameter is σs, which can epistemically be set to match the extent of the foveal dimension of the human

retina (about 5◦ visual angle).



CHAPTER 3

OPERATION

The goal of the project was to create a tool that is easily used by the target audience, maintainable, as fully

automatic as possible, and implements the unique feature of direct quantitative scanpath comparison. The

first two goals precluded the continuation of the former project (described later), and warranted the porting

of the code to C++ to improve the ease of maintenance and modification. In addition, the use of the open

source GUI development library Qt allowed for the development of an effective user interface. Automation is

highly desired because without it, either the tedious process of defining ROIs by hand for every image must

be performed (in the worst case) or the number of expected ROIs must be defined a priori (in the case of

k-means). Either way this limitation is unacceptable when many images or (even worse) video needs to be

analyzed. It is precisely because of that reason that Privitera and Stark’s research had to be extended and

West et al.’s work fell short of our goals.

This implementation sprang out of a previous semester long project. The former project clustered (using

Santella and DeCarlo’s method) input data and produced repetitive values for each subject and local values

for each image. The program was written using C and OpenGL, but lent itself more to object oriented

design because the complexity and intertwining of the involved data structures. There was insufficient time to

implement computation of all the Parsing diagram’s values and provide data for statistical analysis. We chose

to continue the project because of its considerable significance to the eye tracking community and potential

to anyone performing training related to a visual task. It is worth noting that the data from a pilot study

conducted during the former project was used (described later on) to validate this project, explaining why the

design of the experiment was specifically around the local and repetitive measures. This fact does not present

a major problem because local values represent the similarity of multiple viewers performing the same visual

task, and therefore are precisely the metric needed for conducting expert/novice studies or training.

Although the clustering algorithm can in principle operate on raw data, it is generally more meaningful

to compare fixation points. Fixations can be classified from raw eye movement data by several different

approaches, e.g., position-variance, hidden Markov models, or velocity filtering. iComp uses the latter to

classify fixations. Input to the tool assumes a sequence of eye gaze data (x, y, t) augmented with state

information defining the current viewer and current image the data belongs to. Point-by-point velocity-based

saccade detection is performed to filter out (on the order of 10%) saccadic data points. Velocity is defined as
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difference in position over difference in time.

vt =

√
(xt − xt−1)2 + (yt − yt−1)2

dt

Simple thresholding is used to classify points that are related to saccadic eye movement and hence not fixa-

tions.

Clustering

Because all data for each frame should be clustered together the spatial version of the mean shift kernel

is sufficient, i.e., the spatial Gaussian kernel is used:

K([xi, ti]) = exp
− x2

i + y2
i

σ2
s

 .
Kernel support is limited to 2σs, in order to eliminate the effects of distant outliers. The implementation

keeps two lists: one containing the original data (for each image) and the other containing the mean shifted

data. The mean shifted list initially contains a copy of the original data but is repeatedly relocated (s(xi) is

calculated) until convergence. Convergence is detected by the condition that no data points move more than ε

pixels in a single mean shift step. The ε value is typically set to a very small integer which ensures sufficient

convergence so a simple distance clustering algorithm can easily differentiate clusters. Clusters smaller than

a user defined value can be considered outliers and discarded.

Comparing

The comparison portion of the implementation followed Privitera and Stark’s method closely. Each clus-

ter is labeled with a unique character. The cluster ordering is defined by the first subject’s gaze data and kept

consistent for all other subjects. Strings for each subject (for each image) are then constructed by concate-

nating the character, from each cluster visited by the subject’s gaze data, to the end of the string. Duplicate

adjacent characters are eliminated if an attempt is made to concatenate them to the string. The Levenshtein

distance is computed by an optimization algorithm that builds an n × m array (where n and m are the lengths

of the two involved strings) and finds the minimum cost to transform one string into the other. The array is
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constructed by computing:

c(i, j) =


0, s1[i − 1] = s2[ j − 1]

1, otherwise

array[i][ j] = min(array[i − 1][ j] + 1, array[i][ j − 1] + 1, array[i − 1][ j − 1] + c(i, j))

where the first and second terms in the minimization statement handle the costs of deletions and insertions,

and the last term handles substitutions. The first row and column must be initialized with ascending integers

([0..m] and [0..n]) as a pre-processing step. For example, given two strings s1 = abc f e f f gdc and s2 =

a f b f f dcd f , the 10 × 9 array that would be generated is illustrated in Figure 3.1. The cost to completely

a f b f f d c d f

a 0 1 2 3 4 5 6 7 8

b 1 1 1 2 3 4 5 6 7

c 2 2 2 2 3 4 4 5 6

f 3 2 3 2 2 3 4 5 5

e 4 3 3 3 3 3 4 5 6

f 5 4 4 3 3 4 4 5 5

f 6 5 5 4 3 4 5 5 5

g 7 6 6 5 4 4 5 6 6

d 8 7 7 6 5 4 5 5 6

c 9 8 8 7 6 5 4 5 6

Figure 3.1: Example of Levenshtein distance calculation.

transform one string into another is found at the bottom right most entry of the array. The intermediate values

provide the costs of partial transformations.

Visual Data Representation

iComp displays a visualization of the eye gaze data of all subjects for each image (see Figure 3.2 and 3.3).

The subject’s eye movement data is color coded to match the legend at the top right corner of the display. A

bright blue ellipse surrounds each cluster, and a bright green character towards the center of the cluster is its

label.

The user is able to set the velocity at which to classify points as saccades (and therefore discard them),

the σs mean shift area of effect, and the minimum number of points that a cluster may contain without being

classified as an outlier.
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Figure 3.2: Sample data visualization (numerical image)
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Figure 3.3: Sample data visualization (CG image)



CHAPTER 4

EXPERIMENTAL VALIDATION

The goal of the experiment was to verify the correctness of the comparison algorithm. It was hypothesized

that the local, L, value between subjects instructed to view an intuitive scene and given a task should be

significantly higher that the random, Ra, value for both loci, S p, and sequence, S s. On the contrary, subjects

instructed to view a counter-intuitive scene and not given any specific task should produce L values much

lower and closer the the Ra value.

Figure 4.1: Sample (aggregated) numerical and CG stimulus.

Apparatus

The experiment was performed with a Tobii 1750 eye tracker. The Tobii 1750 is a 17 inch flat screen

monitor with an incorporated eye tracker. The resolution of the monitor is 1280 × 1024. The eye tracker is

capable of binocular tracking at a 50Hz sampling rate within 0.5 degrees of accuracy. A PC with dual AMD

Opteron 64 processors running Microsoft Windows XP and software provided with the Tobii gathered the

eye gaze data and exported it via TCP/IP. The display and data collection program was run on a PC with an

AMD Opteron processor running Fedora Core Linux. The Linux box used TCP/IP to collect the data from

the Windows box. The display and data collection application was developed with C++ and OpenGL.
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Experimental Design

Subjects consisted of six college students (all male). Ages of the participants ranged from 21 to 42 years

old. The number of subjects was selected relative to past studies and availability. Subjects were screened

based on their ability to calibrate well with the eye tracker.

The visual stimuli consisted of three blank, black screens with randomly placed numbers 1 through 4

(Figure 4.1) and a more complex computer generated (CG) image produced by a ray tracer (Figure 4.1).

While displaying the first three numerical images each number was flashed onto the screen one at a time.

The individual numbers were displayed for 500ms to allow for an initial orientation or seeking time and one

long fixation. Fixation durations generally range from 150-500ms [Duchowski 2003]. The first stimulus (all

four numbers) was repeated in order to obtain repetitive results. The last (CG) stimulus was displayed for 5

seconds to give subjects additional time to view the feature-rich image.

Procedures

The subjects were placed directly in front of the Tobii at approximately 60cm distance. Calibration was

performed by displaying nine blue circles evenly spaced throughout the display. The circles were displayed

independently and shrank down from a diameter of 30 pixels to a diameter of 2 pixels. The eye tracker col-

lected 22 calibration samples at each circle location. The calibration accuracy was stored after each collection.

Average precision variance was computed to ensure each calibration was within acceptable limits.

Before each trial began the test subjects were instructed to fixate on each number as it appeared and

to freely inspect the last (CG) image. They were informed of how much time they would have to look at

each number and the final image. For each run all the eye gaze data (x, y, and t) was collected. The data

was exported along with headers indicating the current viewer and image to a log file to be analyzed at a later

time. After the test another calibration was performed and the average precision variance was again collected.

The variances from the two calibrations were compared in order to factor out any slippage of the eye tracker.

Results

Any velocity above 130◦/sec [Duchowski 2003] classifies data as saccadic. Given a viewer 60cm away

from a 17 inch (diagonal) display, and a resolution of 1280 × 1024 pixels, the velocity at which to consider

data saccadic translates to approximately 12,527 pixels/sec and was set accordingly. The parafoveal range
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that can be seen by humans in high detail is approximately 5◦ away from the center of vision in any direction.

Given the above dimensions of the display, the parafoveal radius translates to approximately 100 pixels.

Therefore data was analyzed with σs = 100 to cluster in respect to what a viewer can foveate on. Clusters

with less than ten points were treated as outliers and discarded.

Same Diff.
Subj. Subj.

Same Image (SI) Repetitive Local
1.0 1.0

F(1,6) = 176.0, p < 0.01
χ2 = 6.14, p = 0.01

Diff. Image (DI) Idiosyncratic Global
0.94 0.95

Random
S p 0.51

Same Diff.
Subj. Subj.

Repetitive Local
0.59 0.91

F(1,6) = 325.0, p < 0.01
χ2 = 5.40, p = 0.02

Idiosyncratic Global
0.63 0.63

Random
S s 0.03

Figure 4.2: Parsing diagram, numerical images, σs = 100

Same Diff.
Subj. Subj.

Same Image (SI) Repetitive Local
0 0.81

Diff. Image (DI) Idiosyncratic Global
0 0

Random
S p 0.47

Same Diff.
Subj. Subj.

Repetitive Local
0 0.45

Idiosyncratic Global
0 0

Random
S s 0.04

Figure 4.3: Parsing diagram, CG image, σs = 100

The results for the numerical images presented in Figure 4.2 demonstrate that all subjects looked at all

clusters. As anticipated, the local value was significantly high expressing the strong similarity of scanpaths of

different viewers on the same images. The results for the CG image is presented in Figure 4.3. The repetitive,

idiosyncratic, and global values are zero because only one image was viewed by multiple subjects. The local

values are lower for both loci and sequence, as expected.

Since σs was selected based on human physiology it is possible that the data could have been skewed (too

large/not enough clusters) relative to the image features and size. To examine further, the data was run with

σs = 70 and σs = 40, with results exhibited in the Figures 4.4, 4.5, 4.6, and 4.7.

The first value below the L value for each of the numerical images contains results from ANOVA. Sta-

tistically we have two treatments: the similarities between different subjects viewing the same image, and

the similarities between subjects and the random algorithm viewing the same image. ANOVA is applied to

determine whether the means L, Ra, vary significantly, indicating that they belong to different populations.
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Same Diff.
Subj. Subj.

Same Image (SI) Repetitive Local
1.0 0.99

F(1,6) = 579.9, p < 0.01
χ2 = 5.6, p = 0.02

Diff. Image (DI) Idiosyncratic Global
0.85 0.87

Random
S p 0.29

Same Diff.
Subj. Subj.

Repetitive Local
0.59 0.88

F(1,6) = 258.5, p < 0.01
χ2 = 5.33, p = 0.02

Idiosyncratic Global
0.52 0.54

Random
S s 0.03

Figure 4.4: Parsing diagram, numerical images, σs = 70

Same Diff.
Subj. Subj.

Same Image (SI) Repetitive Local
0 0.78

Diff. Image (DI) Idiosyncratic Global
0 0

Random
S p 0.35

Same Diff.
Subj. Subj.

Repetitive Local
0 0.23

Idiosyncratic Global
0 0

Random
S s 0.07

Figure 4.5: Parsing diagram, CG image, σs = 70

The second statistical value is the output produced by the Kruskal-Wallis rank sum test. Because the

sample population was limited, it may be presumptuous to assume a normal distribution. The Kruskal-Wallis

test is used to gage statistical significance without the assumption of normality of their distributions.

Discussion

The results were generally as expected. For the numerical images, both the S p and S s L values were

significantly higher than the random value. The I and G values were high and conjectured so because the nu-

merical visual task was strictly directed. Even without a provided visual task, it was expected and confirmed

that the S p values for the CG image should be somewhat high (approximately 0.50 or above [Privitera and

Stark 2000]). Even so the L values for the CG image were much lower than those for the numerical images.

Unfortunately, insufficient amounts of data were collected to perform significance tests on the CG image mea-

sures. As anticipated, decreasing the σs value had the effect of lowering all of the measures. The numerical

image values still retained significance and remained considerably higher than the CG image values.

The L values for all but the first (numerical) image suffered because data was collected uninterruptedly

throughout each entire trial. Because of this fact, subjects did not have sufficient time to reorient their eyes,

and data from the previous image’s last fixation was carried over to the next image.



17

Same Diff.
Subj. Subj.

Same Image (SI) Repetitive Local
0.96 0.95

F(1,6) = 397.0, p < 0.01
χ2 = 5.33, p = 0.02

Diff. Image (DI) Idiosyncratic Global
0.83 0.86

Random
S p 0.30

Same Diff.
Subj. Subj.

Repetitive Local
0.77 0.80

F(1,6) = 71.1, p < 0.01
χ2 = 5.33, p = 0.02

Idiosyncratic Global
0.49 0.52

Random
S s 0.06

Figure 4.6: Parsing diagram, numerical images, σs = 40

Same Diff.
Subj. Subj.

Same Image (SI) Repetitive Local
0 0.67

Diff. Image (DI) Idiosyncratic Global
0 0

Random
S p 0.32

Same Diff.
Subj. Subj.

Repetitive Local
0 0.20

Idiosyncratic Global
0 0

Random
S s 0.08

Figure 4.7: Parsing diagram, CG image, σs = 40



CHAPTER 5

CONCLUSION

The experiment performed validated the results as expected, verifying the correctness of the combination

of previous methods. The results suffered somewhat because of the limited amount of data used for validation.

Even so the test data used was catered around the expectation that iComp will be used for expert/novice

studies and, therefore, verified the relevant portion of the tool. In general, iComp can be used in the future

for eye tracking studies where direct scanpath comparison is desired to provide a solid process metric.

Future work will include the implementation of controls to limit data temporally to counteract the prob-

lem of fixations carrying over between images (as experienced in the experimental validation of iComp).

Controls to replay the data in real time will be employed. Various visual reports (tool-tips displaying impor-

tant information about viewers, images, and clusters) will be added. The source distribution is available at

<http://www.e-t-r-a.org/iComp/>.

http://www.e-t-r-a.org/iComp/
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