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Abstract

Eye tracking research appears to have reached critical mass in terms of technological ad-

vances as well as sustained theoretical, applied, and even mainstream interest.There is now

a wealth of interesting empirical results, performed by researchers in numerous domains,

e.g., Psychology, Industrial Engineering, Marketing, and Computer Science [Duchowski

2003], to name a few. Most studies, however, are often conducted in the laboratory un-

der various environmental constraints. Meanwhile, relatively little work has been done to

collect eye movement data during performance of natural tasks, i.e., outside the lab, not

to mention outside the building. Indeed, due to reliance on Infra-Red (IR) illumination of

the eyeball for eye tracking precision purposes it is often difficult to track the eyes in the

presence of sunlight.

Some work on collecting eye movements during dynamic activities exists, such as driv-

ing, basketball foul shooting, golf putting, table tennis, baseball, gymnastics and other sit-

uations [Rayner 1998]. However, such results come at a price, literally and figuratively.

Wearable eye trackers are scarce, expensive, and/or uncomfortable (due to clumsy or heavy

headgear or heavy backpacks containing laptops, cameras, etc.). We are aware of only one

serious effort at development of a cheap, accurate, wearable eye tracker: the open source

openEyes project [Li et al. 2006], motivated by the wearable eye tracker developed by Pelz

et al. [2000]. The openEyes wearable eye tracker has matured to allow operation in the

visible spectrum [Li and Parkhurst 2006]. However, its method of ocular feature detection

is such that it is prone to failure in variable lighting conditions. To address this deficiency,

we have developed a cheap (< $1,000) wearable eye tracker that is as comfortable to wear

as a pair of plastic safety glasses. At the heart of our development are novel techniques that

allow operation under variable illumination. Our wearable eye tracker provides acceptable

accuracy (about 2◦ visual angle) at suitably fast processing speed (close to video frame

rates) allowing eye movement analysis during natural tasks.

http://hcvl.hci.iastate.edu/cgi-bin/openEyes.cgi
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Chapter 1

INTRODUCTION

Eye tracking technology has advanced significantly, especially in recent years. Classi-

cal techniques involve the use of electromechanical and electromagnetic apparatus that are

highly invasive, difficult to use, and applicable only to laboratory research.

The predominant concerns in the development and evaluation of an eye tracker are:

cost, invasiveness, ease of use, availability, accuracy, and versatility [Morimoto and Mimica

2005]. Accuracy is possibly the most significant. The use of a contact lens fitted with a

magnetic coil provides accuracy of approximately 0.08◦ visual angle. For interactive use,

accuracy of 1◦ is desirable and 2◦ is often acceptable.

Through recent developments in digital video technology, minimally invasive eye track-

ers have introduced the possibility of mainstream use. Currently, the most popular eye track-

ing techniques involve the use of IR cameras. Developments in image processing, including

those introduced here, are making possible the use of eye trackers easily constructed with

off-the-shelf visual spectrum video cameras, thus reducing the cost while simultaneously

increasing ease of use, availability, and versatility.

Video based eye tracking approaches can be classified by the range of illumination in

which they operate, i.e., infra-red or the visible spectrum. Hardware setups may also be

divided into two categories, head mounted, and remote.

Remote eye trackers use a remote camera, often built into a monitor. They use im-

age processing to locate the subject’s head, eyes, and pupil. After a short calibration the

software can use this information to determine the participant’s gaze point with respect to

screen coordinates. The primary limitation is that head movement distorts the calibration.

The stationary nature of these systems restricts them to situations involving television or

computer monitor use.



Head mounted eye trackers, though inherently mobile, introduce a different set of prob-

lems. The primary concern is intrusiveness. Historically video cameras have been rather

large and heavy. Recently digital video cameras have become much smaller, lighter, and

more affordable, increasing the feasibility of the head mounted design.

Infrared eye trackers exploit the ability to provide light sources invisible to the user

thus constraining the problem domain and improving eye tracker accuracy. The primary

limitation of these systems is the high cost of custom hardware and restriction to indoor

applications where IR interference is minimal.

Visible spectrum eye trackers do not require special circuit boards or IR cameras, and

may be functional in outdoor lighting. This reduces the cost of the hardware, and improves

versatility.

A head mounted eye tracker that remains accurate in the presence of drastic light

changes is desirable. As a person walks from room to room in a building, or simply turns the

head, shadows across the face and reflections in the eye change drastically. Such changes

in brightness, shadows, and specular reflections can prevent an eye tracker form yielding

useful data. Li et al. [2006] developed openEyes, an open-hardware design for a digital eye

tracker that can be built from low-cost, off-the-shelf components, and a set of open-source

software tools for digital image capture, manipulation, and analysis. Concomitantly, they

developed the Starburst algorithm for tracking the pupil in the visible spectrum. A descrip-

tion of how it performs in the presence of drastic light changes was not provided in their

evaluation.

Chapter 2 provides a survey of previous eye tracking research, establishing Li et al.’s

design as the most suitable platform for wearable eye tracker development, as shown in

Figure 1.1. Chapter 3 continues with a detailed description of our hardware and software

implementation contrasting it with that of Li et al. Chapter 4 provides objective results of

our implementation indicating the viability of our design. Our novel techniques improve

the performance of the Starburst algorithm in the presence of variable illumination.

In spite of our improvements many challenges remain. Through our experience in this

project we have gained significant insight. Chapter 5 discusses remaining problems and

proposes potential solutions.
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Figure 1.1: Our “DIY” wearable eye tracker from relatively inexpensive (∼$700) off-the-
shelf components.
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Chapter 2

BACKGROUND

In 1935 Guy T. Buswell published How People Look at Pictures: A Study of The Psy-

chology of Perception in Art [Buswell 1935]. This work is important to the history of eye

tracking because it is the first demonstration of eye gaze recordings over complex scenes,

e.g., photographs of paintings, patterns, architecture, and interior design. However, viewing

of pictures projected on a laboratory display still constitutes something of an artificial task.

Wearable eye trackers allow collection of eye movements in more natural situations,

usually involving the use of generally unconstrained eye, head, and hand movements. Clas-

sic work in this area was performed by Land et al. [1999]. The aim of the study was to

determine the pattern of fixations during the performance of a well-learned task in a natural

setting (making tea), and to classify the types of monitoring action that the eyes perform.

Results indicate that even automated routine activities require a surprising level of contin-

uous monitoring. A head-mounted eye movement video camera was used that provided a

continuous view of the scene ahead, with a dot indicating foveal direction with an accuracy

of about 1◦. Foveal direction is always close to the object being manipulated, and very

few fixations are irrelevant to the task. Roughly a third of all fixations on objects can be

definitely identified with one of four monitoring functions: locating objects used later in

the process, directing the hand or object in the hand to a new location, guiding the approach

of one object to another (e.g., kettle and lid), and checking the state of some variable (e.g.,

water level). Land et al. conclude that although the actions of tea-making are ‘automated’

and proceed with little conscious involvement, the eyes closely monitor every step of the

process. This type of unconscious attention must be a common phenomenon in everyday

life.



Investigating a similar natural task, Land and Hayhoe [2001] examined the relations

of eye and hand movements in extended food preparation tasks. The task of tea-making

was compared to the task of making peanut butter and jelly sandwiches. In both cases the

location of foveal gaze was monitored continuously using a head-mounted eye tracker with

an accuracy of about 1◦, and the head was free to move. In the tea-making study three sub-

jects moved about the room to locate objects required for the task; in the sandwich-making

task seven subjects were seated in one place, in front of a table. The eyes usually reached

the next object in the sequence before any sign of manipulative action, indicating that eye

movements are planned into the motor pattern and lead each action. The eyes usually fixate

the same object throughout the action upon it, although they often move on to the next ob-

ject in the sequence before completion of the preceding action. Specific roles of individual

fixations were found to be similar to roles in the tea-making task. Land and Hayhoe argue

that, at the beginning of each action, the oculomotor system is supplied with the identity

of the required objects, information about their location, and instructions about the nature

of the monitoring required during the action. Eye movements during this kind of task are

nearly all to task-relevant objects, and thus their control is seen primarily ‘top-down’, and

influenced very little by the ‘intrinsic salience’ of objects. According to Land and Hayhoe,

the eyes provide information on an ‘as needed’ basis, but relevant eye movements usually

precede motor acts they mediate by a fraction of a second. Eye movements are thus in the

vanguard of each action plan, and are not simply responses to circumstances.

Ballard et al. [1995] investigated the use of short-term memory in the course of a natural

hand-eye task. They focused on the minimization of subjects’ use of short-term memory

by employing deictic primitives through serialization of the task with eye movements (e.g.,

using the eyes to “point to” objects in a scene in lieu of memorizing all of the objects’

positions and other properties). The authors argue that a deictic strategy in a pick-and-place

task employs a more efficient use of a frame of reference centered at the fixation point,

rather than a viewer-centered reference frame which might require memorization of objects

in the world relative to coordinates centered at the viewer.

A head mounted eye tracker was used to measure eye movements over a three-dimensional

physical workplace block display, divided into three areas, the model, source, and workspace.

6



The task assigned to subjects was to move and assemble blocks from the source region

to the workspace, arranging the blocks to match the arrangement in the model area. By

recording eye movements during the block pick-and-place task, the authors were able to

show that subjects frequently directed gaze to the model pattern before arranging blocks

in the workspace area. This suggests that information is acquired incrementally during the

task and is not acquired in toto at the beginning of the tasks. That is, subjects appeared

to use short-term memory frugally, acquiring information just prior to its use, and did not

appear to memorize the entire model block configuration before making a copy of the block

arrangement.

In a similar block-moving experiment, Smeets et al. [1996] were able to show that

horizontal movements of gaze, head, and hand followed a coordinated pattern. A shift of

gaze was generally followed by a movement of the head, which preceded the movement

of the hand. This relationship is to a large extent task-dependent. In goal-directed tasks in

which future points of interest are highly predictable, Smeets et al. hypothesize that while

gaze and head movements may decouple, the actual position of the hand is a likely candidate

for the next gaze shift.

A more recent example of such intentional visual attention was demonstrated by Pelz

et al. [2000]. Using a commercially available wearable eye tracker from ASL, Pelz et al.

were able to show intentionally-based eye movements, which they termed “look-ahead” eye

movements. In this experiment, a subject donned the wearable computer and eye tracking

rig (the computer was worn in a backpack). During a simple hand-washing task, recorded

eye movements showed that gaze moved to a location (soap dispenser) prior to the move-

ment of the hands to the same location.

Following their work identifying look-ahead eye movements, Babcock and Pelz [2004]

built their own wearable eye tracker from off-the-shelf components. Their aim was to spark

an open-source movement to develop practical eye tracking software and hardware. They

provided practical tips on constructing the tracker, opening the door to open-source soft-

ware development. This corneal reflection eye tracker, mainly constructed from inexpen-

sive components (a Radio Shack parts list was made available at one time), was one of the

first Do-It-Yourself eye trackers.

7



Babcock and Pelz’s early wearable eye tracker suffered from two significant problems.

First, it required the inclusion of one expensive video component, namely a video multi-

plexer, used to synchronize the video feeds of the scene and eye cameras. Second, the sys-

tem relied on somewhat dated (by today’s standards) video recording equipment (a Sony

DCR-TRV19 DVR). Nevertheless, the system served its purpose in fostering a nascent

open-source approach to (wearable) eye tracking that is still influential today. The next

section reviews the state-of-the-art of open source eye tracking software and hardware.

2.1 Eye Tracking Technological Advancements

Eye trackers can be categorized by the same classification used to describe motion capture

(“mocap”) technology used in the special effects film industry (e.g., see Menache [2000]).

Similarities between the two applications are intuitive since the objective of both is record-

ing the motion of objects in space, relative to a fixed camera. In eye tracking, the object

measured is the eye, while in mocap, it is (usually) the joints of the body.

Motion capture/eye tracking devices can be classified by four technology types:

• Electromechanical. In mocap applications, sensors are placed on the skin or joints.

In eye tracking, sensors are placed on the skin around the eye cavity. This type of eye

tracking is known as electro-oculography (EOG).

• Electromagnetic. Mocap sensors of this type are often composed of orthogonal wire

coils measured in a surrounding electromagnetic field. In Virtual Reality applications,

for example, such sensors are attached to the limbs and head. Electromagnetic eye

trackers function similarly—a metallic stalk is fixed to a contact lens worn by the

viewer.

• Video-oculography (VOG). These types of motion trackers are based on optical mo-

tion analysis of photo sequences (video frames) and are widely used in special effects

film, video, and game production. A camera is used to record raw motion, which is

subsequently processed by manual or digital means. To delineate certain types of eye

movements (e.g., fixations, saccades, smooth pursuits), manual VOG analysis relied

8



on trained observers advancing the video, frame by frame, labeling the observed mo-

tion of the eye. This rather tedious approach is today being replaced by automatic,

signal processing means whose objective is to calculate the motion path of the imaged

pupil.

• Video-based, IR reflection. Relying on reflective markers (worn by actors), this par-

ticularly popular type of mocap is free of cable tethers that encumber electromagnetic

and electromechanical trackers. IR light is usually used since it is invisible to the hu-

man eye and hence non-distracting. Eye trackers can benefit from one of four types

of IR reflections, two from the front and rear surface of the cornea, two from the front

and rear surface of the crystalline lens. All four reflections are known as the Purkinje

images [Crane 1994]. Most video-based IR reflection eye trackers use the first Purk-

inje image—the corneal reflection—as a fixed reference point for calculation of the

Point Of Gaze (POG) (see below).

EOG tracker accuracy is limited to the number of sensors placed on the skin. These

trackers are invasive, may be difficult to use if sensors are not placed consistently, and tend

to be noisy due to the nature of the signal being measured. Although this type of eye tracker

has been used effectively in situations where the placement of a camera may not have been

possible, (e.g., see Kaufman et al. [1993]), it has generally been superseded by the camera-

based tracker mainly due to the latter’s improved positional accuracy (cf. Hayhoe et al.

[2002]).

Early gaze recordings, dating as far back as the late 19th century (see Duchowski

[2003]), used a plaster of paris ring attached directly to the cornea connected by mechanical

linkages to recording pens (a basic mechanical device). This technique evolved to the use

of a contact lens to which a mounting stalk is attached. Various mechanical or optical de-

vices have been placed on the stalk attached to the lens. The most accurate method employs

a wire coil that is measured as it moves in an electromagnetic field (an electromagnetic

tracker). Although highly accurate, this method is of course also highly intrusive.

Modern eye tracking technology relies on cameras. Image processing methods are used

to locate and track the pupil (and sometimes the corneal reflection of IR LEDs). If local-
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ization of the eye in the image frame is problematic, the frame difference method may be

used for finding the eyes in the eye camera image(s). This technique, introduced by Ebi-

sawa and Satoh [1993] and popularized by Morimoto et al. [2000], takes advantage of the

retro-reflection property of the eyes. When light from a nearby IR light source enters the

eye through the pupil, part of it is reflected back, in a narrow beam of light directed back

toward the light source. An on-axis light source, located near the optical axis of the camera,

produces a bright pupil image, commonly known as the “red eye” effect in photography.

An off-axis light, located away from the camera’s lens, produces a similar image, except

that the pupils are dark. After taking one video frame with each light, the pupils show up

clearly in the difference image. The difference image has in general a high signal to noise

ratio and is easy to segment.

In addition to tracking of the pupil, the corneal reflection (glint) of the auxiliary (IR)

light source allows computation of the user’s gaze point in the scene, if it can be reasonably

assumed that the corneal glint is fixed with respect to the translating pupil. This is the

technique employed by Babcock and Pelz’s [2004] wearable eye tracker (an IR LED is

positioned off-axis just to the left of the eye imaging camera). A laser diode is used to

project points in the user’s visual field to enable calibration of the tracker to the individual

and subsequent POG calculation.

During calibration, the user is prompted to look at a series of points usually laid out in

a grid pattern. Pupil and corneal glint features are recorded at each calibration point and

used to fit a mapping from these features to the point of gaze in the scene. The modeling

of this feature-to-gaze mapping is usually not a true 3D model, and hence confounds the

geometry of the user’s eye with head location, if the head is free to move with respect to

the camera’s reference frame (as in a remote eye tracking setup). As a result, calibration

tends to deteriorate when the user’s head deviates from the 3D position where it was initially

calibrated. Many eye tracking practitioners will perform a calibration for every user session,

sometimes with multiple calibrations for a longer session. One popular remote eye tracker,

the Tobii 1750, allows head motion only inside a 30 × 15 × 20 cm volume. Wearable eye

trackers tend to assume a stable eye image frame, provided the headgear is immobile.

10



Infra-red illumination offers certain benefits due to the availability of an additional

trackable feature (the corneal reflection). However, it may simultaneously pose a restriction

on where the tracker can be used. For example, operation in sunlight has been problem-

atic. To allow operation in the visible spectrum, and to simplify complexity while reducing

cost, Li and Parkhurst [2006] adopted the technique of limbus tracking—a modernization

of traditional video-oculography, or VOG. The limbus is defined as the iris/sclera bound-

ary. Elimination of IR illumination simplifies the tracker’s design by removing several

components: the IR LED as well as a voltage regulator which required additional circuitry.

Provided the headgear is sufficiently stable, any fixed point in the eye image frame can be

used as an acceptable reference point for POG estimation.

Li and Parkhurst’s VOG tracker is limited in several ways. First, being a limbus tracker,

it may not function particularly well under variable light conditions, i.e., in bright light

when the contrast of the iris/sclera boundary is masked by specular reflections. Second,

manual intervention is required at startup, e.g., initial eye location is entered manually.

Third, being worn by an individual, human variability poses a significant problem to eye

movement (scanpath) comparison between individuals. The last problem is not necessarily

restricted to a VOG limbus tracker, rather it falls under the more general problem of scene

registration (e.g., a well known problem in Augmented Reality). We address the first two

deficiencies through novel enhancements to Li and Parkhurst’s VOG tracker. By doing so,

and by maintaining the cost of the tracker under $1,000, we further the applicability of this

technology to the exploration of a variety of natural tasks. We propose two methodological

paradigms: view stitching, and object registration to address the third problem.

11
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Chapter 3

APPARATUS DESIGN

Figure 3.1: Illustration of ocular anatomy: the cross-section of the eye at left (Gullstrand’s
model of the eye is similar to this illustration but specifies various physical properties such
as dimensions of the optical features and their indices of refraction); the idealized eye as
seen by a camera at close proximity.

There are currently two basic approaches to POG calculation. The first is based on

a 3D model of the eyeball—often Gullstrand’s (see illustration in Figure 3.1)—and the

computation of a ray emanating from a central point within the eye. The POG is then

calculated (parametrically) as the intersection of the ray and some surface of interest in the

environment, i.e., p = c+t ·L,where p is the 3D POG, c is the center of the cornea (modeled

by a sphere), t is the parametric distance along the ray L coinciding with the optical axis.

This approach requires both a geometric model of the eye (e.g., the corneal radius must be

defined), and a basic (planar) model of the environment (for example, see Hennessey et al.

[2006]).

The second approach, based on traditional video-oculography (VOG), was taken by

Pelz et al. [2000], continued by Li et al. [2006], and is adopted as our starting point. As

such, the goal is to estimate the center of the limbus (defined by an ellipse fit to the iris/sclera

boundary; see Figure 3.1) and define (x, y) as the vector from some static reference point in

the eye image to the limbus center (this will vary as the eye rotates).



To estimate the POG, a calibration is required where the viewer is asked to sequentially

view a set of spatially distinct calibration points (markers; 9 is common) with known scene

coordinates, (sx, sy). The POG at any point in the scene image frame is then obtained by

calculation of a mathematical mapping from (x, y) to (sx, sy).

This method requires the collection of two synchronized video sequences, one of the

eye, the other of the scene being viewed. We use the same hardware design described

by Li [2006], with minimal modifications as necessary to facilitate material availability.

Section 3.1 provides all specifications required for hardware replication.

There are many components to any eye tracking application. The interaction of each

component can be quite confusing. Section 3.2 provides a complete picture of every com-

ponent, describes its function, and discusses specific challenges encountered in the imple-

mentation of each. Two key refinements are discussed in this section. First, localization of

the initial eye location is performed automatically and does not require user intervention.

Second, calibration requires that scene coordinates of the calibration points are known. Un-

like remote camera systems, these coordinates change with head movement. We developed

an image processing technique that identifies the location of the calibration dot with respect

to the scene camera.

It is important to note that both calibration and tracking contain a common component

(limbus tracking). Limbus tracking is the most challenging component of the entire appli-

cation. Estimation of the limbus center follows Li et al.’s [2006] Starburst algorithm but

introduces a critical refinement. Ellipse fitting considers both the pupil/iris boundary as well

as the iris/sclera boundary. This refinement enhances operation in variable light conditions.

Section 3.3 provides a detailed description of our limbus tracking implementation.

3.1 Hardware Design

The apparatus is constructed entirely from off-the-shelf (OTS) inexpensive commercially

available components. The simplicity of the design facilitates easy construction requiring

only a minimal amount of expertise.

14



Figure 3.2: Eye tracker assembly.

Parts List:

• 1 pair of safety glasses (AOSafety X-Factor XF503) www.aosafety.com : These

safety glasses were chosen over others because the one piece shield and metal frame

remained rigid enough to support the cameras after lens modifications were made.

• 1 pair plastic sunglasses (AOSafety I-Riot 90714) : The thin wire nose piece of the

XF503 is not adequate for our purposes. It is removed and replaced with the more

comfortable nose piece of the 90714.

• 3/8 inch by 2 yards black polyester braided elastic : Wires were wrapped with elastic

rather than conventional wire wrap. This elastic is available in small quantity at any

local fabric store.

• 2 Phillips Pan head #8 by 1/2′′type A screws : One screw was used to connect the

scene camera bracket. The other was used to connect the nose piece.

• Plastic mounting bracket : This bracket was cut from scrap plastic, and used to mount

the scene camera.

• 1/8′′×10′′round aluminum or brass rod : This rod may be purchased at any local

hardware store. It was used to mount the eye camera. Temporarily attach rod, and
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eye camera with zip-ties. Test and adjust camera positions. Cut rod to proper length,

then wrap wires with elastic strap.

• 2 digital video minicams (Camwear Model 200) http://dejaview.no-ip.org: These in-

expensive cameras are commercially available from Deja View [Reich et al. 2004].

Each Deja View wearable digital mini-camcorder uses the NW901 MPEG-4 CODEC

from Divio, Inc. The NW901 single-chip CODEC enables the design and manufac-

ture of a new class of solid-state camcorders that combine 30 fps MPEG-4 video,

high fidelity AAC 2-channel audio, and up to 4-mega-pixel digital still camera func-

tionality. The Deja View Camwear product offers continuous video capture using a

solid state buffer. Video is recorded on memory sticks for offline processing.

In the next sections, we describe our eye tracking algorithm in detail. Contrasting with

prior work, specifically Li et al.’s [2006] Starburst algorithm, we discuss our improvements

toward automatic estimation of the initial eye location, automatic calibration dot detection,

and enhanced tolerance to adverse lighting.

3.2 Software Design

Our algorithm is composed of three main parts: video preprocessing, calibration, and visu-

alization. Each of these main components may be decomposed into several sub-components

(see Figure 3.3). During preprocessing the two videos are converted to a usable format,

synchronized, and the initial pupil location is found. The calibration process computes the

coefficients of a transform function that maps eye coordinates into gaze data. The remainder

of the video may then be processed allowing useful inferences to be made.

3.2.1 Video Pre-Processing

There are four steps to video preprocessing: conversion, segmentation, synchronization,

and template search. We utilized the most expedient approach to conversion and segmenta-

tion. A description is provided to facilitate replication of our results. Exploration of more

effective approaches is recommended. Synchronization was achieved by a method Li and
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Figure 3.3: Software architecture
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Parkhurst [2006] suggested. We employ a novel variant of the Borgefors’ [1988] template

search algorithm to identify the initial pupil location.

Conversion is necessary because the Deja View recorder stores the video in .asf for-

mat. This video is highly compressed, and does not facilitate convenient manipulation. Ide-

ally we would like to access each frame individually in RGB format. We use libmpeg2dec

to parse individual frames from the video file. Unfortunately, this library, and all others

we found, is specific to .mpg files. We tried to find an application to convert directly from

.asf to .mpg but all converters failed to make this conversion reliably. We eventually set-

tled upon the Apex Video Converter to convert from .asf to .wmv and ffmpeg to convert

.wmv to .mpg.

If the entire uncompressed video is stored on disk, it requires hundreds of megabytes

for a video lasting only a few minutes. Such a strategy is hampered by slow disk access.

Fortunately the libmpeg2dec application provides the (-p) option that facilitates the use

of named pipes in the Linux environment. By using script files we were able to pipe the

output of two simultaneous invocations of libmpeg2dec into our application. We were

then able to handle the named pipes within our application as if they were regular files

while preventing any uncompressed data from being written to disk.

It cannot be assumed that the eye and scene cameras begin recording at exactly the

same time. It is therefore necessary to synchronize the video streams of both cameras. As

suggested by Li and Parkhurst [2006], a flash of light visible in both videos is used as a

marker. We have employed an LCD monitor to display calibration dots, we therefore found

it convenient to flash the monitor in order to create the short burst of light necessary for

synchronization. We flash the monitor again to signal the end of calibration. The light from

the monitor is sufficiently bright to be automatically identified in both video streams.

Even though the Starburst algorithm is able to accurately find the pupil center, it only

preforms a local search. It therefore needs a good starting point from which to begin search-

ing. For frames in the middle of the video we may simply use the result from the previous

frame, but for the first frame some other method must be devised. Li et al. [2006] developed

an application to facilitate manual entry of the initial start point. In order to make our eye

tracker easier to use we opted for a more automated solution.
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(a) raw image frame (b) Canny edges (c) chamfer image (d) limbus pattern

Figure 3.4: Pre-processing steps for pupil/limbus pattern matching.

Our automatic localization of the pupil is based on template matching as described by

Borgefors [1988]. Her algorithm begins by using the Canny [1983] edge detector on both

the image to be searched and a template of the object to be searched for. It then creates

a chamfer image for which each pixel value is set to its distance from the nearest edge.

A search map is then created by convolving the edge detected template with the chamfer

image. The pixel in the search map with lowest value is the most likely location for the

object.

The underlying idea of Borgefors’s algorithm is computation of the average edge dis-

tance at every possible location. It finds the location at which the edges of the template

are most closely aligned with edges in the image. Only edge distance is considered. The

algorithm does not consider edge direction. An extreme case where this algorithm fails is

in the search for a dark circle on a gray background among many bright circles. The gradi-

ent of the dark circle is directed toward the center while the gradient of the bright circle is

directed away from the center. This information is however discarded after edge detection.

Such loss of edge direction prevents the algorithm from distinguishing between bright and

dark circles.

Our innovation derived from Birchfield’s [1997; 1998] elliptical head tracking work

allows the algorithm to utilize edge direction information in addition to the edge distance

information. One component of the Canny [1983] edge detector computes the x and y

components of the gradient for each pixel. Since gradient information is therefore already

available, and knowing that the dot product of two unit vectors yields a value indicating the

extent to which they are aligned, the modification is almost trivial.

First we invert the chamfer image. Next we normalize the gradients for both the tem-

plate and the search image. We then augment the convolution operation with the dot product
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of the normalized gradient. Finally we consider the highest value in the search map to be

the most likely location rather than the least. The proposed pupil localization algorithm is

given in Listing 3.1.

Figure 3.5: Effect of using the gradient direction to locate pixels associated with the pupil;
the image pair at left considers only edge distance, the pair at right also considers gradient
direction.

MakeSearchMap(Gradient image G, Chamfer image C,
Template image T , Template gradient GT)

{
for all template locations x, y {
sum = 0;
for all locations dx, dy ∈ T , 0
sum += G(x + dx, y + dy) ·GT (dx, dy) ×C(x + dx, y + dy);

M(x, y) = sum; // M is the search map;
}
return maximum pixel in M;

}

Listing 3.1: Algorithm for finding initial seed point for Starburst algorithm.

3.2.2 Calibration

Calibration requires mapping of the position of the pupil center (x, y) in the eye frame to

the location of a calibration point in the scene frame with coordinates (sx, sy), under the

assumption that the eye gazes at the given calibration point at the same instance. We devel-

oped an image processing technique that automatically identifies the location of calibration

dots.

The coordinates of calibration points displayed on a computer monitor are obtained in

the scene image by appropriate thresholding of the image, as shown in Figure 3.6. As there

are many small bright spots in the scene, we must distinguish the small bright spot that is

the calibration dot from all others.
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The calibration dot is clearly the only bright spot on the computer screen, so we first distin-

guish the screen from its surroundings then distinguish the calibration dot from the screen.

We do this in a five step process.

1. Apply a low level threshold to the scene frame.

2. Identify the largest dark region (the computer screen).

3. Eliminate holes in the largest region using a modified flood fill.

4. Apply a high level threshold to the original scene frame.

5. Combine results from 3 and 4 above with logical & operation.

(a) scene frame (b) low threshold (c) largest region

(d) after flood fill (e) high threshold (f) final result

Figure 3.6: Automatic calibration depends on synchronization of eye and scene camera
images and automatic detection of calibration dots based on thresholding.

The viewer is assumed to fixate upon these points as they are displayed. Treating the

position of the pupil center as the (x, y) vector from a static reference point in the eye image

we may compute a transform function that maps coordinates of the pupil obtained in the

eye image into coordinates of gaze points with respect to the scene image.

Morimoto and Mimica [2005] suggest using this second order polynomial:

sx = a0 + a1x + a2y + a3xy + a4x2 + a5y2, sy = b0 + b1x + b2y + b3xy + b4x2 + b5y2.(3.1)
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The unknown parameters ak and bk can be computed via Lagrange’s method of least squares

(e.g., see Lancaster and Šalkauskas [1986]).

3.2.3 Visualization

Visualization is composed of three parts: limbus tracking, mapping, and analysis. Limbus

tracking is discussed in section Section 3.3. Mapping is a straightforward application of

Equation 3.1 following least-squares minimization.

Analysis is the process of converting raw gaze data into a form that allows useful infer-

ences to be made. There has been much study as to how raw gaze data should be processed.

These techniques employ knowledge from the field of signal processing as well as knowl-

edge of the human visual system.

As with any discrete representation of a continuous phenomenon, aliasing is of signifi-

cant concern. Finite impulse response (FIR) filters are commonly used as a preprocessing

step to smooth the noise that exists in raw gaze data. Careful analysis of eye movements in-

dicates that the human eye tends to remain fixed for short periods of time, termed fixations,

and moves rapidly between fixations, performing quick eye movements called saccades. It

is well accepted that the human visual system does not process information gathered during

saccades. For this reason procedures have been developed that group gaze points pertaining

to the same fixation while discarding those that correspond to saccades. This is usually

done through the use of convolution filters that detect velocity and acceleration.

The spatial relationship between fixations is used to determine regions of interest ROI.

Sometimes ROIs may also be manually predetermined. Once this is done we may determine

which ROIs were fixated upon, and for how long. String matching algorithms have been

used to compare the order in which different people fixate upon the same ROIs, scan-path

analysis.

With a head-mounted eye tracker, we would also like to compare analyzed eye move-

ments among individuals. The free movement allowed by the head-mounted design intro-

duces sufficient variability between individuals’ scene video that scene registration regis-

tration becomes a significant problem.
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We are unaware of any automated technique to handle this situation. In Section 5 we pro-

pose two methodological paradigms to alleviate this issue: view stitching and object regis-

tration.

As implementation of these techniques is beyond the scope of this project we opted to

use a simple 5-tap FIR filter to smooth the gaze data, and display a simple cross hair at the

location of gaze as illustrated in Figure 3.7. Our analysis is therefore limited to the display

of the smoothed Point Of Gaze, or POG.

Figure 3.7: Cross hairs indicate point of gaze.
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3.3 Limbus Tracking

Limbus center estimation is composed of three basic steps performed on each eye image

frame (see Figure 3.8): image preprocessing, feature detection, and ellipse fitting.

During image pre-processing, the image is filtered to reduce noise and the gradient is

calculated. Feature detection is a local search resulting in a set of points on the limbus or

around the pupil. Ellipse fitting uses the set of feature points to define an ellipse whose

center is assumed to coincide with the center of the pupil.

Figure 3.8: Basic strategy behind proposed limbus tracking.

3.3.1 Image Pre-Processing

It is necessary to pre-process each frame in such a way that noise in the image is reduced

while retaining as much information as possible. Like the Starburst algorithm, we begin

by convolving the eye camera image with a Gaussian filter to reduce camera shot noise.

Gaussian filters are effective in reducing noise problematic to any algorithm that utilizes

gradient information. Furthermore, the separable nature of the 2D Gaussian enables effi-

cient implementation.

Most of the noise in video produced using OTS cameras is due to lossy compression.

Any lossy compression algorithm can be expected to produce some problematic artifacts in

the video. As more artifacts are permitted, the videos can become more compressed. The

algorithms used have been specifically tuned to allow artifacts so long as they are just barely

noticeable. This is commonly known as the just noticeable difference. Unfortunately image

processing techniques are much more sensitive to these artifacts than the human eye.
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Most compression schemes divide the image into small blocks, and preform a conver-

sion on each block individually. The values within a block are rounded. As adjacent blocks

are rounded differently, we are left with edges along block boundaries. These undesirable

edges produce sharp gradients that mask the thick gradients along the edges of desired fea-

tures. The Gaussian filter smooths the image eliminating sharp highly localized gradients.

Thicker gradients are blurred but not eliminated. In Starburst the gradient of the entire im-

age is not precomputed but rather computed during feature detection. It was speculated that

doing so reduced computation. However gradient estimation is simply a convolution opera-

tion identical to Gaussian smoothing except that rather than convolving with the Gaussian,

we convolve with the derivative of the Gaussian. It is therefore no more computationally

expensive than noise reduction. We opted to simplify implementation by pre-computing the

gradient. We speculate that our decision to do so has no significant effect upon performance.

3.3.2 Feature Detection

Limbus feature points are found in two steps. As in Starburst, candidate feature points are

found in the first step by casting rays out from an initial seed point and terminating the ray

as it exits a dark region. We determine if the ray is exiting a dark region by checking the

gradient magnitude and direction (see Figure 3.9).

Figure 3.9: Basic emulation of Li et al.’s [2006] Starburst algorithm where rays are cast
outward from an initial seed point assumed to lie within close proximity to the pupil.

In the second step the feature detection process is repeated with rays cast back from

candidate boundary features toward the seed point. The second sub-step tends to increase

the ratio of the number of feature points on the pupil contour over the number of feature

points not on the pupil contour. The ray does not terminate until the magnitude of the

gradient component collinear with the ray exceeds some predetermined threshold. Although

this technique is quite effective and efficient in some lighting conditions it is quite sensitive

to the threshold chosen. Identification of an ideal threshold is confounded by the fact that
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higher thresholds are more effective in bright light, giving way to lower thresholds in dim

light. Our algorithm iterates through multiple thresholds to average the best results. The

basic feature detection algorithm is given in Listing 3.2.

FeatureDetect(Gradient image G, Threshold T , Start point S )
{
for θ from 0 to 2π { // phase 1

L = S ; // L is the current location
∆x = cos(θ); ∆y = sin(θ);
while G(L) · ∆ < T { L(x) += ∆x; L(y) += ∆y; }
push L on P; // P is a point stack

}
for θ from 2π to 0 { // phase 2
pop L off P; add L to P′; // P′ is a point set
for α from −(θ + π6 ) to −(θ − π6 )
while GL · ∆ < T { L(x) += ∆x; L(y) += ∆y; }

add L to P′;
}
return P′;

}

Listing 3.2: Algorithm for finding feature points.

3.3.3 Ellipse Fitting

The Starburst algorithm uses the Random Sample Consensus (RANSAC) paradigm to fit

ellipses to the feature points. RANSAC was chosen due to its tolerance to outliers; outliers

are common in the observed feature sets. Five points are selected at random from the feature

set. These points are used in conjunction with the standard equation for a conic section as

suggested by Fitzgibbon et al. [1999]: F(a, x) = a · x = ax2 + by2 + cxy + dx + ey + f = 0

with a = [a b c d e f ]T and x = [x2 y2 xy x y 1] where the system of linear equations is

solved for a. We may then quickly verify that the resulting coefficients do indeed describe

an ellipse. Many such ellipses are created, and the quantity of feature points within some

small epsilon counted. The ellipse with the highest count is retained.

We generate random ellipses in a similar manner, but rather than evaluating them based

upon a characteristic of the feature set, evaluate them based upon characteristics of the

original image. Ellipse fitting itself is accomplished via the proposed algorithm given in

Listings 3.3 and 3.4. We label each pixel that the ellipse passes through as bad or good

depending upon the magnitude and direction of the gradient at that pixel. The percentage
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of good pixels is computed. The ellipse with the highest ratio is retained. Our modification

allows the algorithm to be more tolerant to poorly localized feature sets.

EllipseFit(Gradient image G, Threshold T , Set of points S )
{
repeat C1 times {
repeat C2 times {
fill S randomly from P; // S is a set of 5 points
make EQ from S ; // EQ is a 5 × 5 system of equations
solve EQ → E′; // E′ is a candidate ellipse
if E′ is not an ellipse continue;
if Fit(G,T ,E′) > Fit(G,T ,ET)
replace ET with E′ // ET is a temporary ellipse

}
add coefficients of ET → E; // E is the ellipse

}
divide coefficients of E by C1;
return E;

}

Listing 3.3: Algorithm for fitting ellipse to limbus feature points.

Fit(Gradient image G, Threshold T , Ellipse E)
{
for every P that E crosses { // P is a pixel in G

CT ++; // CT is the count of total pixels
let V point from CE to P; // CE is center of ellipse E, V is unit vector
if GP · V > T CG++; // CG is the count of good pixels

}
return CG / CT;

}

Listing 3.4: Counting number of feature points used in ellipse fit.

Starburst’s ellipse fitting is further complicated by its inability to distinguish ellipses

that partially span the pupil and those that partially span the limbus from those that exclu-

sively adhere to one or the other. We suggest that the feature points be split into two groups

based upon pixel luminance. Pixel luminance is used to allocate feature points into one of

two equally sized bins. This form of feature point splitting allows the creation of two sets

of ellipses, one corresponding to the iris/sclera limbus, the other to the pupil/iris boundary.

Figure 3.10 (a) shows the result of feature detection: points on both pupil and iris bound-

aries are identified. Without luminance-based delineation, average ellipses that span both

pupil and iris are fit erroneously, as shown in Figure 3.10 (d), resulting from the generated
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ellipses fit to sets of 5 points, randomly chosen and shown in Figure 3.10 (b). Splitting into

two sets of boundary points improves pupil/iris classification, as shown in Figure 3.10 (c)

allowing us to properly detect the erroneous ellipse segments in Figure 3.10 (d).

(a) (b) (c) (d)

Figure 3.10: Ellipse fitting: (a) result of feature detection: points on both pupil and iris
boundaries are identified; (b) ellipses generated by fitting sets of 5 randomly selected points;
(c) luminance-based delineation of feature points into two sets; (d) proper detection of
erroneous ellipse spanning both pupil and iris.
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Chapter 4

EXPERIMENTAL VALIDATION

We evaluate our implementation by first calculating calibration coefficients as discussed

in Section 3.2.2. We then reprocess the same video, tracking the disparity between mapped

gaze points and tracked calibration dots. We calculate the Euclidean distance between the

mean calibration dot center and the mean gaze point over the period of gaze dot display.

This distance is our error measurement given in pixels. The Deja-View camera has a 60◦

field of view, with video resolution of 320×240. Therefore a simple multiplication by

0.1875 converts our units of measurement from pixels to degrees visual angle. Using this

metric, we were able to track the eye in three separate videos each with an average error

less than 2◦ (see Table 4.1).

Video No. Average Error Standard Deviation
#1 1.625 0.986
#2 1.803 1.066
#3 1.601 0.698

Table 4.1: Error in degrees visual angle.

For each video we displayed calibration dots at 16 locations on the computer LCD.

Each dot remained stationary on the computer display for about 1.5 sec before moving to

the next location. We tracked the dot with respect to the scene camera and the eye with

respect to the view camera at a rate of 30 samples per second. Figure 4.1 provides a visual

representation of our results. The dot tracking algorithm is sometimes unable to locate the

calibration dot. In such cases the corresponding eye data is discarded.

An eye tracker that allows reuse of calibration coefficients between sessions rather than

recalibrating for each session is desirable. We therefore also evaluated calibrations across

different sessions (i.e., using calibration coefficients from video 1 to evaluate video 2). The



(a) video #1 (b) video #2

(c) video #3 (d) legend

Figure 4.1: A visual representation of calibration accuracy.
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results were not quite as good but still encouraging. Using this method we were able to

repeatedly track the eye with an average error less than 5◦ visual angle (see Table 4.2 and

Figure 4.2).

Video No. Calibration No. Average Error Standard Deviation
#1 #2 2.899 2.196
#1 #3 4.499 1.616
#2 #1 2.932 3.271
#2 #3 3.633 1.748
#3 #1 4.327 1.377
#3 #2 3.808 1.330

Table 4.2: Error in degrees visual angle.

Although dynamically changing light does have a negative effect on our ability to track

the eye, we were able to obtain usable data even in bright sunlight. This was primarily due

to our luminance based delineation of feature points. With this additional feature our eye

tracker was able to automatically switch from tracking the limbus in dim light to tracking

the pupil in bright light as illustrated in Figure 4.3.

Even though we have made significant advances in the development of a visual spec-

trum head mounted eye tracker, we have observed several sources of error in our current

implementation. Section 5 discusses these sources and suggests possible solutions.
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(a) video#1 calibration#2 (b) video#1 calibration#3

(c) video#2 calibration#1 (d) video#2 calibration#3

(e) video#3 calibration#1 (f) video#3 calibration#2

Figure 4.2: A visual representation of calibration accuracy.
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Figure 4.3: Cross hairs indicate point of gaze.
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Chapter 5

FUTURE WORK

Future work may be divided into two main categories, building a better eye tracker, and

constructing better analysis tools. When building a better eye tracker one can either improve

the hardware or the software. Our focus is on improving the software. The accuracy may

be improved in software either by improving the calibration or by more accurately tracking

the limbus. In this section we will not discuss calibration. Section 5.1 will discuss sources

of error in our eye tracker and propose potential solutions.

Due to the high variability between sessions introduced by the use of a head mounted

eye tracker it is difficult to compare eye movements among individuals. We therefore

present View Stitching (Section 5.2) as a potential solution. For dynamic object tracking,

Object Registration is proposed (Section 5.3).

5.1 Proposed improvements

Specular reflections continue to be a problem. Whenever a specular reflection is present

in the general vicinity of the pupil, the algorithm detects feature points near the border

of the reflection. These erroneous feature points surround neither the pupil nor the iris.

From the scene camera we can locate light sources that cause these reflections. Using

Gullstrand’s model of the eye we may render the specular component under these light

conditions. Knowing the approximate location of the specular reflection we may then adjust

pixel values in the eye image to compensate.

Although our implementation uses multiple threshold values and averages the best re-

sults, it is still accurate only within a small range of lighting conditions. In a recent publica-

tion Li and Parkhurst [2006] alter the feature detection algorithm. Rather than terminating



rays at the first location where the gradient exceeds the threshold the ray continues so long

as the gradient magnitude monotonically increases. This is analogous to the non-maximal

suppression technique used in Canny’s [1983] edge detector. Due to time constraints we

have not implemented this feature. Upon implementation we expect some performance

improvement.

Many erroneous feature points were detected along the eye lashes, and in the dark region

near the nose. Both of these regions lay beyond the eye lid. By tracking the eye lid we

could filter out these points. Eye lid tracking also holds promise as an additional source of

information for eye tracking practitioners, may help us implement a more accurate ellipse

evaluation function, and allow us to eliminate gaze data during blinks.

Our current method of converting the video files into individual frames introduces a

number of harmful artifacts. Some frames are dropped and others are duplicated. This re-

duces the accuracy of our synchronization. On average the two videos remain synchronized

and never differ by more than two frames. The MPEG-4 standard however requires that

each frame has a time stamp. If we can obtain this time stamp information we can improve

synchronization.

The Gaussian is commonly used as a general purpose noise filter in many image pro-

cessing applications. It is well known that noise filters specifically designed for a particular

type of noise can be much more effective. For example median filters are much more ef-

fective than the Gaussian at removing salt and pepper noise. Most of the noise in video

obtained using off the shelf cameras is due to lossy compression. This noise has a specific

structure, and we believe that development of a specific filter targeting compression artifacts

will significantly improve the performance of the Starburst algorithm.

The quality of feature detection depends upon the quality of the start point. As the start

point drifts away from the pupil center the feature set becomes unbalanced. For each frame

we used the result from the previous frame as our start point. As the eye moves rapidly this

start point may be significantly off center. We may use a Kalman filter to better estimate the

start point for the next frame. We may also use our knowledge of typical eye movement,

extreme locations, saccade velocity, to mitigate errors.
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If we calibrate under ideal light conditions and retain the information of every ellipse

generated during calibration we will have a population of about 800 ideal ellipses. Using

principal component analysis on this population we may generate a function that evaluates

the probability of a given ellipse belonging to the ideal population. This probability could

be used as an additional factor in our ellipse evaluation method.

5.2 View Stitching

To compare eye movements among individuals, we propose to customize match moving

algorithms to stitch a field of view mosaic over which we will project multiple scanpaths,

as illustrated in Figure 5.1.

Figure 5.1: Artistic conceptualization of view stitching: assembly of stable image mosaic.

The standard procedure for creating a mosaic from individual images involves detecting

and matching interest points in neighboring images, estimating the relative camera orien-

tations, and stitching the images. Borrowing ideas from Steedly et al. [2005], we may

use the inherent ordering of the video frames to constrain the search for matches. To re-

duce the computational burden, a recursive clustering algorithm may be employed to com-

press the measurements by replacing groups of interest point matches with hallucinated

matches obtained from the centers of the clusters. This procedure increases speed with

only a slight decrease in accuracy, since matches that span a small angular window poorly

constrain the non-translational components of the camera motion. Camera orientations

will be estimated using a second-order non-linear technique such as Newton-Raphson or

Levenberg-Marquardt to minimize an objective function for P image pairs and Mi mea-
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surements between pair i:
∑

i∈P
∑

j∈Mi eT
i jΣ
−1
i j ei j, where ei j is the 2D measurement error due

to match j in pair i, and Σi j is the measurement covariance. Stitching of the images may

be performed using bilinearly weighted contributions to reduce visible artifacts [Szeliski

1996]. Interest points may be detected by the 2 × 2 gradient covariance matrix [Shi and

Tomasi 1994], Lowe’s [2004] shift-invariant feature transform (SIFT), or Multi-scale ori-

ented patches (MOPs) [Brown and Winder 2005].

5.3 Object Registration

Automatic identification of landmarks in the video scene during human navigation of natu-

ral environments is a problem related to scene registration in Augmented Reality. We may

provide signal processing means to identify known or artificially placed landmarks in the

environment, as suggested in Figure 5.2. This would allow comparison of the number of

fixations devoted by individuals to navigational landmarks (such as signage).

Figure 5.2: Automatic object registration during navigation in natural environment. Such
landmark registration will allow comparison of individuals’ fixation counts within these
automatically detected Regions Of Interest (ROIs).

The well-known face detector of Viola and Jones [2004] is effective at classifying pat-

terns in an image with accuracy comparable to other more computationally expensive tech-

niques. The speed of the approach is due to its use of simple features resembling Haar

wavelets computed using an efficient integral image computation, along with a cascade ar-

chitecture that quickly discards image locations whose appearance is drastically different

from the target. This algorithm can be quite effective at detecting other types of objects,

such as automobiles, hospital stretchers, and the torsos of people.
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To train the classifier, one only needs to provide hand-labeled positive and negative training

examples during the one-time training phase, and the rest of the processing is fully auto-

matic. We may apply this same procedure to detect natural or artificial landmarks of interest

in eye tracking scenarios in real time.
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Chapter 6

CONCLUSION

The predominant concerns in the development and evaluation of an eye tracker are:

cost, invasiveness, ease of use, availability, accuracy, and versatility. Recent development

in video technology has allowed video based eye tracking to become predominant over

all older techniques. Video based approaches may be classified by range of illumination:

visual spectrum, or infrared. Hardware may be classified as head mounted or remote. Visual

spectrum outperforms infra-red in terms of cost, availability, and versatility. Head mounted

eye trackers are more versatile than remote. We opted to use the openEyes project [Li et al.

2006] as the foundation for our own research, as it is the main open sourced development

of a cheep, accurate, wearable eye tracker we are aware of.

We have made three significant improvements upon their work. The first two, initial

pupil location detection, and calibration dot tracking improve ease of use by reducing the

necessity for user intervention.

At the heart of our initial pupil location detection is a novel innovation to Borgefors’

[1988] template matching algorithm. We achieve higher reliability by incorporating edge

direction information along with the edge distance information. This technique may be

further improved through the incorporation of a variable threshold mechanism.

Tracking of the calibration dot is an essential component of automated calibration of a

head mounted eye tracker. We are unaware of any previous publication describing such a

process. We have implemented a simple and effective thresholding procedure that achieves

calibration dot tracking. Gradient information may be utilized in a more sophisticated more

reliable and efficient local search strategy.



Our third improvement, pixel luminance delineation, improves eye tracking accuracy

and versatility by allowing the algorithm to better distinguish the pupil boundary from the

limbus. Through our work we have gained valuable insight as to how further improve eye

tracking accuracy.
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