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Abstract

Abstract

The scanpath comparison framework based on string editing is re-
visited. The previous method of clustering based on k -means “pree-
valuation” is replaced by the mean shift algorithm followed by ellip-
tical modeling via Principal Components Analysis. Ellipse intersec-
tion determines cluster overlap, with fast nearest-neighbor search
provided by the kd-tree. Subsequent construction of Y -matrices
and parsing diagrams is fully automated, obviating prior interactive
steps. Empirical validation is performed via analysis of eye move-
ments collected during a variant of the Trail Making Test, where par-
ticipants were asked to visually connect alphanumeric targets (let-
ters and numbers). The observed repetitive position similarity index
matches previously published results, providing ongoing support for
the scanpath theory (at least in this situation). Task dependence of
eye movements may be indicated by the global position index, which
differs considerably from past results based on free viewing.
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Introduction

Scanpaths are compelling visualizations of eye movements
(Noton & Stark, 1971)
Not yet fully exploited for quantitative potential
Want an easy computation analogous to ANOVA table
I like string editing approach for computing “similarity”
between scanpath pairs (Privitera & Stark, 2000)
Resulting metric is similar to Spearman’s rank-order
coefficient (Boslaugh & Watters, 2008) but with coefficient
S ∈ [0, 1] instead of S ∈ [−1, 1] 3 / 28
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Background: What’s been done before?

Scanpaths have been compared to evaluate on-screen
television enhancements (Josephson & Holmes, 2002,
2006)
String editing used to investigate amalgamation of
scanpaths into a single, representative scanpath
(Hembrooke et al., 2006)
Levenshtein similarity replaced by Needleman-Wunsch
distance yielding eyePatterns (West et al., 2006)

note that “large distance” is “small similarity”
(Waterman, 1989)

Other approaches are limited in functionality (e.g.,
ProtoMatch (Myers & Schoelles, 2005)) or use
trajectory-based approach (Vlachos et al., 2002, 2004;
Torstling, 2007)
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Comparison with recent work

Our contribution is similar to Jarodzka et al. (2010). . .
mean-shift clustering similar to amplitude-based clustering
pairwise Y -matrix similar to adjacency matrix A(k , l)

. . .but with important differences
no use of shortest path (Dijkstra’s) although that’s an
interesting approach
not based on either gridded or semantic AOIs
(“content-driven”) but rather clustered on fixation points
themselves (“data-driven”)

Other important (but perhaps subtle) points to remember
temporal information is taken into account
(via temporal component of mean-shift cluster)
pairwise statistical significance is calculated against
random scanpaths—significance between scanpath groups
not yet implemented (but I don’t think at all intractable)
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Example of Approach

String editing was used by Privitera and Stark (2000) to
compare human fixations with those predicted by
automatic means (e.g., Itti et al.’s (1998) saliency model)

s1 = abcfeffgdc
s2 = afbffdcdf start cost 0

s1 = abcfeffgdc
s2 = afeffdcdf after substitution of first b by e cost 1

s1 = abcfeffgdc
s2 = abcfeffdcdf after insertion of bc after first a cost 2

s1 = abcfeffgdc
s2 = abcfeffdc after deletion of last df cost 2

s1 = abcfeffgdc
s2 = abcfeffgdc after insertion of g cost 1
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Implementation: Levenshtein Distance Similarity

Given two strings s1 = abcfeffgdc and s2 = afbffdcdf ,
construct 10× 9 array A
Assign cost of character deletion, insertion, or substitution:

A[i][j] = min


A[i − 1][j ] + 1 // deletion
A[i ][j − 1] + 1 // insertion
A[i − 1][j − 1] + c(i , j) // substitution

where

c(i , j) =

{
0, s1[i − 1] = s2[j − 1]
1, otherwise

Note that costs can be weighted, as in
Needleman-Wunsch distance
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Implementation: Dynamic Programming

Use dynamic programming to arrive at transformation cost
Normalize total cost to the length of the longer string, in
this case 9, yielding Ss = (1− 6/9) = 0.33
Store pair-wise similarity coefficients in a table, the
Y -matrix, with one row and column for each image viewed
by a subject (for all subjects)

a f b f f d c d f
a 0 1 2 3 4 5 6 7 8
b 1 1 1 2 3 4 5 6 7
c 2 2 2 2 3 4 4 5 6
f 3 2 3 2 2 3 4 5 5
e 4 3 3 3 3 3 4 5 6
f 5 4 4 3 3 4 4 5 5
f 6 5 5 4 3 4 5 5 5
g 7 6 6 5 4 4 5 6 6
d 8 7 7 6 5 4 5 5 6
c 9 8 8 7 6 5 4 5 6
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Implementation: Data Organization

Subj. 1 Subj. 2
Pict 1 Pict 2 Pict 1 Pict 2

S1P1 R I L G
S1P2 R G L
S2P1 R I
S2P2 R

Same Subj. (SS) Diff. Subj. (DS)
Same Img. (SI)→ Repetitive Local
Diff. Img. (DI)→ Idiosyncratic Global

Random

String editing used to quantitatively measure loci of
fixations Sp as well as order Ss

Similarity coefficients stored in Y -matrix
Values from Y -matrix condensed (averaged) in two tables,
called Parsing Diagrams
Two parsing diagrams, one for each of Sp and Ss indices
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Innovations: Labeling & Fast Overlap Lookups

Improve scanpath comparison by substituting k -means
clustering with mean shift (Santella & DeCarlo, 2004)

k means requires a priori knowledge of the number of
clusters (Duda & Hart, 1973)
mean shift is “self-organizing” in comparison

Use Principal Components Analysis to model elliptical
cluster boundaries

use ellipses to calculate overlap among clusters
use kd-tree to spatially partition scanpath clusters for
efficient nearest-neighbor search (Hoppe, 1994)
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Empirical Validation

An experimental paradigm was sought to elicit similar
scanpaths from participants
A gaze-directed variant of the Trail Making Test protocol
(Bowie & Harvey, 2006) was chosen
The TMT is usually comprised of parts A and B

part A: 1-2-3-4-5-A-B-C-D-E
part B: 1-A-2-B-3-C-4-D-5-E

11 / 28
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More on the TMT

The TMT is thought to measure processing speed,
sequencing, mental flexibility, and visual-motor skills

Part A is presumed to be a test of visual search and motor
speed skills
Part B is considered to also test higher level cognitive skills

Normally, the TMT’s main dependent variable of interest is
total time to completion
In its present instantiation, the primary measure of interest
is the scanpath (which inherently encodes processing time)
Main concerns here are spatial distribution and ordering
Repetitive scores are obtained by recording two scanpaths
over a single image
Local and global indices are gathered by having multiple
participants perform the test
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Experimental Design

Subjects: six college students (4 M, 2 F; ages 18-27,
median age 21)

results from the TMT should be stratified by age and
education (Tombaugh, 2004); our sample represents one
such strata

Stimulus: two 1280 × 1024 images
Procedure: 5-point calibration sequence, followed by
TMT-A, and TMT-B, each image viewed twice (order not
counterbalanced)

participants were asked to view the sequences as quickly
as possible but dwelling over each number or letter for a
fraction of a second (they were aware of the underlying
fixation algorithm)

Apparatus: Tobii ET-1750 video-based corneal reflection
(binocular) eye tracker
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Pilot Testing

Mean shift clustering of fixations xi = (xi , yi , ti) depends on
the use of a kernel function (Santella & DeCarlo, 2004)

K ([xi , ti ]) = exp

(
x2

i + y2
i

σ2
s

+
t2
i

σ2
t

)
where σs and σt determine local support of the kernel in
both spatial (dispersion) and temporal extent
Pilot testing revealed the importance of both spatial and
temporal support
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Aggregate Results

SS DS
SI → Repetitive Local

0.65
F(1,22) = 98.2,

p < 0.01

0.47
F(1,238) = 848.2,

p < 0.01
DI → Idiosyncratic Global

0.44
F(1,46) = 165.4,

p < 0.01

0.44
F(1,238) = 884.0,

p < 0.01
Random

Sp 0.06

SS DS
SI → Repetitive Local

0.35
F(1,22) = 34.6,

p < 0.01

0.23
F(1,238) = 148.5,

p < 0.01
DI → Idiosyncratic Global

0.18
F(1,46) = 52.1,

p < 0.01

0.17
F(1,238) = 221.0,

p < 0.01
Random

Ss 0.08

Statistical significance
derived from random
scanpath comparisons
Position indices >
sequence indices
Repetitive indices show
highest correlations
Repetitive position index is
comparable to previous
work (0.65 vs. 0.64)
Key difference here is task
(TMT vs. free viewing)
Global position index may
indicate task dependence
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Segregate Results: TMT-A vs. TMT-B

Aggregate statistics tend to obscure processes related to
individual behaviors or stimuli
Analysis over just TMT-A and TMT-B shows that repetitive
(and local) scores are higher for TMT-A
TMT-A relies mainly on visual search and should therefore
be easier to execute (fewer errant saccades)

16 / 28
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Perf. & Process Metrics Across Trials
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No. of Fixations, Fixation Durations vs. TMT Trials

Mean No. of Fixations
Mean Fixation Durations

TMT-B’s lower Sp, Ss suggest increased cognitive difficulty
However, repeated measures ANOVA only shows a
marginally significant main effect of trial on speed, and . . .
. . . time to completion decreases, suggesting decreased
cognitive difficulty (opposite of what was expected)
Process measures suggest learning effect as fixation
durations decrease significantly across trials but the
number of fixations do not
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Study Notes & Limitations

Aggregate analysis of the six participants’ scanpaths
shows position indices are generally higher than sequence
indices, as expected
Repetitive indices show highest correlations (not surprising
given the task stipulated by the Trail Making Test protocol)
A shortcoming of the framework is lack of significance
testing between different groups of scanpaths

Feusner and Lukoff (2008) suggest computation of the
d∗ = dbetween − dwithin statistic, where dbetween is the average
distance between scanpaths in different groups and dwithin is
the average distance between scanpaths in the same group
to include this computation within present framework would
require construction of additional between-group and
within-group Y -matrices
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General Discussion

Scanpath comparison adds another dimension to
traditional speed/performance analysis
Quantification of position and order similarity appears to
provide useful information (e.g., pointing out similarity to
random order)
Aggregate analysis may be prone to “saturation effect”
(e.g., given too many scanpaths, numbers may become
meaningless—entire area will be covered visually
eventually)
Segregate analysis may be more meaningful (e.g.,
between-subjects analysis for different cultural groups or
expert/novice comparisons)
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Conclusion

Mean-shift clustering of fixations and elliptical modeling
enables automation of the string editing approach
Construction of a kd-tree facilitates efficient lookup
(O(log n) average time per search)
The combination of these algorithms removes prior
reliance on preevaluation and human intervention
Scanpath comparison metrics validated empirically by a
variant of the Trail Making Test
For a well-defined visual task, moderately correlated
repetitive and global position indices are expected
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Questions

Thank you
Comments, Questions?
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