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Collaborators

Thomas Grindinger: My former PhD student on whose work
this paper is based.
Vidya Murali: Joined us during the summer to test collected
eye movements against those predicted by the computational
saliency model.
Stephen Tetreault: One of my Research Experience for
Undergraduates (REU) students who ported Thomas’ code to
C++ and helped with analysis of this study (among other
things; he also implemented the Qt interface).
Stan Birchfield: Prof. Birchfield is Vidya’s advisor in the ECE
department at Clemson.
Pilar Orero: Prof. Orero is my colleague at the Universitat
Autònoma de Barcelona (Traducció i Interpretació), who got
me started on video and who provided the stimulus and one
of the task suggestions that went with it.

2 / 25



Collaborators Abstract Motivation Background Classification Framework Experimental Validation Results Conclusion Q&A

Abstract

Abstract
A novel method for distinguishing classes of viewers from their aggre-
gated eye movements is described. The probabilistic framework accu-
mulates uniformly sampled gaze as Gaussian point spread functions
(heatmaps), and measures the distance of unclassified scanpaths to a
previously classified set (or sets). A similarity measure is then com-
puted over the scanpath durations. The approach is used to compare
human observers’s gaze over video to regions of interest (ROIs) au-
tomatically predicted by a computational saliency model. Results show
consistent discrimination between human and artificial ROIs, regardless
of either of two differing instructions given to human observers (free or
tasked viewing).
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Motivation

Wearable tracker (Ryan et al., 2010); making PB&J sandwiches (Land & Hayhoe, 2001).

Aggregate eye movements over video to indicate saliency

Classify scanpaths quantitatively and automatically

Use forward-facing camera or other video media
Why not use saliency models, e.g., Itti et al. (1998)?

bottom-up vs. top-down cognition (Land & Tatler, 2009)

Identify perceptually salient image elements
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Novelty of Approach & Empirical Validation

Eye movement classification
operates over video sequences

Approach accumulates gaze points
over video frames, but can apply to
any sampling rate (Grindinger et al.,
2010)

Classification distinguishes classes
of viewers
Distinction may be indicative of
viewers’ cognitive intent—eye
movements are task-dependent as
shown by Yarbus (1967)

instructions influence scanpaths
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Background: Scanpath Comparison

Experts’ and novices’ scanpaths over weather image

Scanpaths are vivid visualizations (Noton & Stark, 1971)
Not yet fully exploited for quantitative potential
Comparison can either be content- or data-driven

latter applied directly to (x, y, t) eye movement stream
Two recent approaches exemplify the distinction

Jarodzka et al. (2010) propose a vector-based similarity
measure quantizing stimulus frame 5×5 grid
Duchowski et al. (2010) revisit Privitera and Stark’s (2000)
string-editing approach operating directly on the scanpaths
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Background: Heatmap Visualization

Wooding’s (2002) heatmaps

Heatmap visualizations, introduced by Pomplun et al. (1996),
were popularized by Wooding (2002)

Here, heatmaps are used for analysis and for visualization

Other similar approaches include Hembrooke et al.’s (2006)
“average scanpath” and scanpath distance via the Earth
Mover’s Distance (Dempere-Marco et al., 2006)

Classification is similar in spirit to Torstling’s (2007) machine
learning classification of content
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Classification Framework

Using Airola et al.’s (2009) nomenclature, let:
D be a probability distribution over sample space Z = X ×Y
X be the input space
Y = {−1, 1} be the output space

A classifier is defined as a function CZ (x) that is used to
output a set of threshold-based decisions
Z = {z1, . . . , zm} ∈ Z

m, where zi = (xi , yi), with:
X = {x1, . . . , xm} ∈ X

m, the training set of m training examples,
and
Y = {y1, . . . , ym} ∈ Y

m, denoting the labeling of x ∈ X as a
non-class (x− ∈X−) or class member (x+ ∈X+), respectively
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Three steps to Building and Evaluating CZ(x)

First, similarity scores are extracted from X
Second, a discrimination threshold h is computed from
similarity scores so that x is assigned as member or
non-member,

x ←
{

X+ if CZ (x) > h (member class)
X− otherwise (non-member class)

Third, classifier reliability is gauged by the conditional
expected AUC, or AUC, the area under Receiver Operating
Characteristic (ROC) curve,

A (CZ ) = Ex+∼D+,x−∼D− [H(CZ (x+) − CZ (x−))]

where H(a) is the Heaviside step function,

H(x) =


1 x > 0

1/2 x = 0
0 x < 0
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Step 1: Extract Similarity Scores

A scanpath s(t) is parametrized by
timestamp t such that
s(t) = {(i(t), j(t)) | t ∈ [t − w, t + w]}

A set of scanpaths is parametrized
similarly
S(t) = {s1(t), s2(t), . . . , sm(t)}

The similarity of s′ to a set of
classified scanpaths S (at t) is

d(s′,S) =
1
|S |

∑
s∈S

g(s′, µs)

Heatmap of a classified scanpath
set S at a discrete timestamp. As
yet unclassified scanpaths’ (gray cir-
cles not used in heatmap genera-
tion) similarities are calculated as
the average Gaussian similarity, e.g.,
d(A ,S) < d(B ,S) here.

with

g(s′, µs) =
1

√
2πσ2

exp
(
−

(s′ − µs)2

2σ2

)
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Step 2: Compute Classification Threshold h

An unclassified scanpath is accepted by the classifier if its
similarity score is higher than the computed threshold

The threshold is selected as the value closest to (0, 1) on the
ROC curve, where the ratio of false positives to true positives
is balanced
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Step 3: Estimate Classifier Performance

In a small sample setting, estimate the performance, or
reliability, of a classifier via cross-validation
Leave-pair-out cross-validation, or LPOCV, is adopted since
the intent is to estimate the conditional AUC, avoiding pitfalls
associated with pooling and averaging of LOOCV
(leave-one-out cross-validation) (Airola et al., 2009)
With LPOCV, AUC is estimated as

Â (X ,CZ ) =
1

|X+||X−|

∑
si∈X+

∑
sj∈X−

H(C
{i,j}(si) − C

{i,j}(sj))

where X+⊂X and X−⊂X are the positive and negative
examples of the training set X , and C

{i,j}(si) is the classifier
trained without the ith and jth training examples
The AUC estimate Â (X ,CZ ) is equivalent to the
Mann-Whitney U statistic
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Experimental Validation

Stimulus:
three video sequences

Participants:
27 college students,
ages 18–21

Procedures:
free or tasked viewing

Apparatus:
Tobii ET-1750 tracker,
17′′ (1280×1024) display

Sequence A, with pair of modern sneakers

Sequence B, expected to be unfamiliar

Sequence C, with large number of faces
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Computational Saliency

Artificial gaze points over video were generated by the iLab
Neuromorphic Toolkit

The toolkit contains ezvision that can be executed on static
images to predict human visual attention

The model also operates on video, and forced to find a salient
point within the frame’s exposure duration (33 ms for Marie
Antoinette or 40 ms for mouse video)

Noise added to salient points simulating 27 hypothetical users
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Results

One-to-many
Cross-Validation One-to-one Cross-Validation

Perceptual (pooled) vs.
computational saliency

Perceptual “free viewing”
vs. computational saliency

Perceptual tasked vs.
computational saliency

A B C A B C A B C

ACC 1.000 1.000 0.997 1.000 0.999 0.999 0.999 1.000 1.000

AUC 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Results composed of classifier accuracy (ACC) and area under ROC curve (AUC) for one-
to-many and one-to-one comparisons of two classes of viewers (“free viewing” and tasked)
vs. the computational model for each of the three video stimuli

Results show significantly consistent discriminability between
perceptual (top-down) and computational (bottom-up) saliency
Consistency refers to the evaluation of the Heaviside step
function over all m × (m − 2) cross-validation partitionings
Recall estimated AUC is the Mann-Whitney U statistic
Human scanpaths (tasked vs. free viewing) are not as easily
distinguished
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Heatmaps: Video Excerpts

Free and tasked scanpaths (artificial scanpaths in inset)

Seq. A: Classifier does not discriminate human scanpaths

Seq. B: Classifier distinguishes tasked human scanpaths

Seq. C: Classifier shows best discriminative performance
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Conclusion

An eye movement classification algorithm was presented to
distinguish scanpaths

The algorithm successfully discriminated between perceptual
and computational saliency

Results illustrate the disparity between top-down visual
processes and bottom-up computational models
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Questions

Thank you

Comments, Questions?
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Results

Cross-Validation Results

Fixations Gaze points

A B C A B C

ACC 0.598 0.586 0.745 0.544 0.761 0.733

AUC 0.681 0.627 0.808 0.611 0.815 0.808

z -2.26∗ -1.57 -3.77∗∗ -1.39 -3.90∗∗ -3.77∗∗
∗ p < 0.05 ∗∗ p < 0.01 (two-tailed)

Results composed of classifier accuracy (ACC) and its conditional expected AUC for one-
to-one comparison of two viewer classes for each of three video stimuli. AUC is reported
with standardized score z. The left set of results pertains to fixations sampled at each video
frame; the right set to accumulated gaze points.

Results show significantly consistent discriminability between
(human) tasked and free viewing over Seq. B and Seq. C, but
not over Seq. A when comparing gaze points
The difference between tasked and free viewing scanpaths
over Seq. C was highly significant regardless of whether gaze
points or fixations were examined
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Heatmaps: Static Frames

Seq. A: free (above) and tasked viewing (below).

Seq. B: free (above) and tasked viewing (below).

Seq. C: free (above) and tasked viewing (below).
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